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F O R E W O R D

Dear reader,
In the course of your experience with Rust so far, it’s likely that 

you have noticed a knowledge gap between what your existing learning 
resources have prepared you for versus what you see from the folks making 
the top tier of widely used Rust libraries and applications.

Libraries that do very well are commonly powered by a co-occurrence 
of taste and dedication on the authors’ part: feeling what to build, and 
building the thing (it’s that simple). This book teaches neither of those 
things.

However, it’s been my experience that taste emerges from a deep com-
fort with the fundamental pieces. It’s here I feel this book will be helpful to 
you. I don’t consider it a coincidence that pretty much all of the “household 
name” open source Rust library developers understand everything in this 
book—even when it’s not the case that they use every single thing from the 
book in every single library.

In this book you will find a level of nuance and tradeoffs and opin-
ions that does not arise from introductory material. Structs are structs, 
and we have no need to have an opinion about structs. But infinitely flex-
ible macro APIs (Chapter 7), the judicious application of unsafe code 
(Chapter 9), effective testing that speeds you up rather than slowing you 
down (Chapter 6)—someone who’s digested The Rust Programming Language 
(a.k.a. The Book, https://doc.rust-lang.org/book/) but not much beyond that 
is generally going to have a hard time manifesting what they know into 

https://doc.rust-lang.org/book/
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high-quality or innovative projects, but this book takes you to the starting 
point to begin building your personal taste in highly polished Rust develop-
ment. You will take what you read here and get it wrong a bunch of times, 
and get it right a couple, and get better.

I encourage you to seize upon that starting point consciously. I want 
you to be free to think that we got something wrong in this book; that 
the best current guidance in here is missing something, and that you can 
accomplish something over the next couple years that is better than what 
anybody else has envisioned. That’s how Rust and its ecosystem have gotten 
to this point.

David Tolnay



P R E F A C E

One of the goals listed on the Rust 2018 roadmap was to develop teaching 
resources to better serve intermediate Rustaceans—those who aren’t begin-
ners but also aren’t compiler experts looking to design a new iteration of 
the borrow checker. That call inspired me to start live-streaming coding 
sessions where I implemented real systems in Rust in real time—not toy 
projects or long-winded introductions to basic concepts, but libraries and 
tools I would actually use for my research. My thinking was that Rust new-
comers needed to see an experienced Rust programmer go through the 
whole development process, including design, debugging, and iteration, in 
order to understand how to think in Rust. While a beginner could attempt 
the same things themselves, it’d likely be far slower and frustrating since 
they would also be learning the language along the way.

Many developers said that my videos provided a good way to learn to 
use Rust “for real,” which was very exciting. However, over the years, it also 
became clear that the videos weren’t for everyone, or for every situation. 
Some developers prefer to be more in control over their own learning and 
would rather have a teaching resource they can consume at their own pace. 
Others just need to understand a particular topic better, or find out how 
a specific feature works or is best used, and for those situations, a six-hour 
coding video isn’t that helpful. I wanted to make sure that intermediate 
resources were available for those people and situations as well, which is 
what ultimately made me decide to write this book. My aim was to distill 
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all that time spent teaching intermediate Rust by example into solid textual 
explanations of the most important intermediate topics.

I realized early on that the book would complement the videos, not 
replace them. I remain convinced that the best way to quickly gain expe-
rience in a language, barring actively working with it yourself daily, is to 
watch someone experienced use it. But in my time writing this book, I’ve 
also found that this format works incredibly well as a comprehensive, by-
topic reference that collects lots of knowledge in one place, which is where 
coding videos fall terribly short. The coding sessions help develop your Rust 
experience, intuition, and taste. The book teaches you the theory, mecha-
nisms, and idioms of the language. And ultimately, a developer needs all of 
the above to truly excel at what they do.

Now, many many words and iterations later, what you have in front of 
you is my attempt at plugging another hole in the set of intermediate Rust 
teaching resources. I hope that you find it useful and that we’re now one 
step closer to fulfilling that roadmap goal!
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and code, but it was his vast experience, attention to detail, and penchant 
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ments sometimes made me decide to rewrite entire sections, but always in 
ways that made them immeasurably better than they had been before.
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In any language, the gap between what the 
introductory material teaches you and what 

you know after years of hands-on experience 
is always wide. Over time, you build familiar-

ity with idioms, develop better mental models for core 
concepts, learn which designs and patterns work and 
which do not, and discover useful libraries and tools in 
the surrounding ecosystem. Taken together, this expe-
rience enables you to write better code in less time.

With this book, I’m hoping to distill years of my own experience writing 
Rust code into a single, easy-to-digest resource. Rust for Rustaceans picks up 
where The Rust Programming Language (“the Rust book”) leaves off, though 
it’s well suited to any Rust programmer that wants to go beyond the basics, 
wherever you learned the trade. This book delves deeper into concepts 
such as unsafe code, the trait system, no_std code, and macros. It also cov-
ers new areas like asynchronous I/O, testing, embedded development, and 

I N T R O D U C T I O N
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ergonomic API design. I aim to explain and demystify these more advanced 
and powerful features of Rust and to enable you to build faster, more ergo-
nomic, and more robust applications going forward.

What’s in the Book
This book is written both as a guide and as a reference. The chapters are 
more or less independent, so you can skip directly to topics that particularly 
interest you (or are currently causing you headaches), or you can read the 
book start to finish for a more holistic experience. That said, I do recom-
mend that you start by reading Chapters 1 and 2, as they lay the foundation 
for the later chapters and for many topics that will come up in your day-to-
day Rust development. Here’s a quick breakdown of what you’ll find in each 
chapter:

Chapter 1, Foundations, gives deeper, more thorough descriptions of 
fundamental Rust concepts like variables, memory, ownership, bor-
rowing, and lifetimes that you’ll need to be familiar with to follow the 
remainder of the book.

Chapter 2, Types, similarly provides a more exhaustive explanation of 
types and traits in Rust, including how the compiler reasons about 
them, their features and restrictions, and a number of advanced 
applications.

Chapter 3, Designing Interfaces, covers how to design APIs that are intui-
tive, flexible, and misuse-resistant, including advice on how to name 
things, how to use the type system to enforce API contracts, and when 
to use generics versus trait objects.

Chapter 4, Error Handling, explores the two primary kinds of errors 
(enumerated and opaque), when the use of each is appropriate, and 
how each of these are defined, constructed, propagated, and handled.

Chapter 5, Project Structure, focuses on the non-code parts of a Rust 
project, such as Cargo metadata and configuration, crate features, and 
versioning.

Chapter 6, Testing, details how the standard Rust testing harness 
works and presents some testing tools and techniques that go beyond 
standard unit and integration tests, such as fuzzing and performance 
testing.

Chapter 7, Macros, covers both declarative and procedural macros, 
including how they’re written, what they’re useful for, and some of their 
pitfalls.

Chapter 8, Asynchronous Programming, gives an introduction to the dif-
ference between synchronous and asynchronous interfaces and then 
delves into how asynchrony is represented in Rust both at the low level 
of Future and Pin and at the high level of async and await. The chapter 
also explains the role of an asynchronous executor and how it makes 
the whole async machinery come together.
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Chapter 9, Unsafe Code, explains the great powers that the unsafe key-
word unlocks and the great responsibilities that come with those pow-
ers. You’ll learn about common gotchas in unsafe code as well as tools 
and techniques you can use to reduce the risk of incorrect unsafe code.

Chapter 10, Concurrency (and Parallelism), looks at how concurrency is 
represented in Rust and why it can be so difficult to get right in terms 
of both correctness and performance. It covers how concurrency and 
asynchrony are related (but not the same), how concurrency works 
when you get closer to the hardware, and how to stay sane while trying 
to write correct concurrent programs.

Chapter 11, Foreign Function Interfaces, teaches you how to make Rust 
cooperate nicely with other languages and what FFI primitives like the 
extern keyword actually do.

Chapter 12, Rust Without the Standard Library, is all about using Rust 
in situations where the full standard library isn’t available, such as 
on embedded devices or other constrained platforms, where you’re 
restricted to what the core and alloc modules provide.

Chapter 13, The Rust Ecosystem, doesn’t cover a particular Rust subject 
but instead aims to give broader guidance about working in the Rust 
ecosystem. It contains descriptions of common design patterns, advice 
on staying up to date on additions to the language and best practices, 
tips on useful tools and other useful trivia I’ve accumulated over the 
years that isn’t otherwise described in any single place.

The book has a website at https://rust-for-rustaceans.com with links to 
resources from the book, future errata, and the like. You’ll also find that 
information at the book’s page on the No Starch Press website at https:// 
nostarch.com/rust-rustaceans/.

And now, with all that out of the way, there’s only one thing left to do:

fn main() {

https://rust-for-rustaceans.com
https://nostarch.com/rust-rustaceans/
https://nostarch.com/rust-rustaceans/




1
F O U N D A T I O N S

As you dive into the more advanced cor-
ners of Rust, it’s important that you ensure 

you have a solid understanding of the fun-
damentals. In Rust, as in any programming 

language, the precise meaning of various keywords 
and concepts becomes important as you begin to 
use the language in more sophisticated ways. In this 
chapter, we’ll walk through many of Rust’s primitives  
and try to define more clearly what they mean, how they work, and why 
they are exactly the way that they are. Specifically, we’ll look at how vari-
ables and values differ, how they are represented in memory, and the 
different memory regions a program has. We’ll then discuss some of the 
subtleties of ownership, borrowing, and lifetimes that you’ll need to have a 
handle on before you continue with the book.

You can read this chapter from top to bottom if you wish, or you can 
use it as a reference to brush up on the concepts that you feel less sure 
about. I recommend that you move on only when you feel completely 
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comfortable with the content of this chapter, as misconceptions about how 
these primitives work will quickly get in the way of understanding the more 
advanced topics, or lead to you using them incorrectly.

Talking About Memory
Not all memory is created equal. In most programming environments, 
your programs have access to a stack, a heap, registers, text segments, 
memory-mapped registers, memory-mapped files, and perhaps nonvolatile 
RAM. Which one you choose to use in a particular situation has implica-
tions for what you can store there, how long it remains accessible, and what 
mechanisms you use to access it. The exact details of these memory regions 
vary between platforms and are beyond the scope of this book, but some 
are so important to how you reason about Rust code that they are worth 
covering here.

Memory Terminology
Before we dive into regions of memory, you first need to know about the dif-
ference between values, variables, and pointers. A value in Rust is the combi-
nation of a type and an element of that type’s domain of values. A value can 
be turned into a sequence of bytes using its type’s representation, but on its 
own you can think of a value more like what you, the programmer, meant. 
For example, the number 6 in the type u8 is an instance of the mathematical 
integer 6, and its in-memory representation is the byte 0x06. Similarly, the 
str "Hello world" is a value in the domain of all strings whose representation 
is its UTF-8 encoding. A value’s meaning is independent of the location 
where those bytes are stored.

A value is stored in a place, which is the Rust terminology for “a location 
that can hold a value.” This place can be on the stack, on the heap, or in 
a number of other locations. The most common place to store a value is a 
variable, which is a named value slot on the stack.

A pointer is a value that holds the address of a region of memory, so the 
pointer points to a place. A pointer can be dereferenced to access the value 
stored in the memory location it points to. We can store the same pointer 
in more than one variable and therefore have multiple variables that indi-
rectly refer to the same location in memory and thus the same underlying 
value.

Consider the code in Listing 1-1, which illustrates these three elements.

let x = 42;
let y = 43;
let var1 = &x;
let mut var2 = &x;
1 var2 = &y;

Listing 1-1: Values, variables, and pointers



Foundations   3

Here, there are four distinct values: 42 (an i32), 43 (an i32), the address of 
x (a pointer), and the address of y (a pointer). There are also four variables: x, 
y, var1, and var2. The latter two variables both hold values of the pointer type, 
because references are pointers. While var1 and var2 store the same value ini-
tially, they store separate, independent copies of that value; when we change 
the value stored in var2 1, the value in var1 does not change. In particular, 
the = operator stores the value of the right-hand side expression in the place 
named by the left-hand side.

An interesting example of where the distinction between variables, val-
ues, and pointers becomes important is in a statement such as:

let string = "Hello world";

Even though we assign a string value to the variable string, the actual 
value of the variable is a pointer to the first character in the string value 
"Hello world", and not the string value itself. At this point you might say, 
“But hang on, where is the string value stored, then? Where does the 
pointer point?” If so, you have a keen eye—we’ll get to that in a second.

N O T E  Technically, the value of string also includes the string’s length. We’ll talk about that 
in Chapter 2 when we discuss wide pointer types.

Variables in Depth
The definition of a variable I gave earlier is broad and unlikely to be all 
that useful in and of itself. As you encounter more complex code, you’ll 
need a more accurate mental model to help you reason through what 
the programs are really doing. There are many such models that we can 
make use of. Describing them all in detail would take up several chap-
ters and is beyond the scope of this book, but broadly speaking, they can 
be divided into two categories: high-level models and low-level models. 
High-level models are useful when thinking about code at the level of 
lifetimes and borrows, while low-level models are good for when you are 
reasoning about unsafe code and raw pointers. The models for variables 
described in the following two sections will suffice for most of the mate-
rial in this book.

High-Level Model

In the high-level model, we don’t think of variables as places that hold bytes. 
Instead, we think of them just as names given to values as they are instanti-
ated, moved, and used throughout a program. When you assign a value to a 
variable, that value is from then on named by that variable. When a variable 
is later accessed, you can imagine drawing a line from the previous access 
of that variable to the new access, which establishes a dependency relation-
ship between the two accesses. If the value in a variable is moved, no lines 
can be drawn from it anymore.

In this model, a variable exists only so long as it holds a legal value; you 
cannot draw lines from a variable whose value is uninitialized or has been 
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moved, so effectively it isn’t there. Using this model, your entire program 
consists of many of these dependency lines, often called flows, each one 
tracing the lifetime of a particular instance of a value. Flows can fork and 
merge when there are branches, with each split tracing a distinct lifetime 
for that value. The compiler can check that at any given point in your pro-
gram, all flows that can exist in parallel with each other are compatible. For 
example, there cannot be two parallel flows with mutable access to a value. 
Nor can there be a flow that borrows a value while there is no flow that 
owns the value. Listing 1-2 shows examples of both of these cases.

let mut x;
// this access would be illegal, nowhere to draw the flow from:
// assert_eq!(x, 42);
1 x = 42;
// this is okay, can draw a flow from the value assigned above:
2 let y = &x;
// this establishes a second, mutable flow from x:
3 x = 43;
// this continues the flow from y, which in turn draws from x.
// but that flow conflicts with the assignment to x!
4 assert_eq!(*y, 42);

Listing 1-2: Illegal flows that the borrow checker will catch

First, we cannot use x before it is initialized, because we have nowhere 
to draw the flow from. Only when we assign a value to x can we draw flows 
from it. This code has two flows: one exclusive (&mut) flow from 1 to 3, and 
one shared (&) flow from 1 through 2 to 4. The borrow checker inspects 
every vertex of every flow and checks that no other incompatible flows exist 
concurrently. In this case, when the borrow checker inspects the exclusive 
flow at 3, it sees the shared flow that terminates at 4. Since you cannot 
have an exclusive and a shared use of a value at the same time, the borrow 
checker (correctly) rejects the code. Notice that if 4 was not there, this 
code would compile fine! The shared flow would terminate at 2, and when 
the exclusive flow is checked at 3, no conflicting flows would exist.

If a new variable is declared with the same name as a previous one, they 
are still considered distinct variables. This is called shadowing—the later 
variable “shadows” the former by the same name. The two variables coexist, 
though subsequent code no longer has a way to name the earlier one. This 
model matches roughly how the compiler, and the borrow checker in par-
ticular, reasons about your program, and is actually used internally in the 
compiler to produce efficient code. 

Low-Level Model

Variables name memory locations that may or may not hold legal values. 
You can think of a variable as a “value slot.” When you assign to it, the slot 
is filled, and its old value (if it had one) is dropped and replaced. When you 
access it, the compiler checks that the slot isn’t empty, as that would mean 
the variable is uninitialized or its value has been moved. A pointer to a vari-
able refers to the variable’s backing memory and can be dereferenced to 
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get at its value. For example, in the statement let x: usize, the variable x is a 
name for a region of memory on the stack that has room for a value the size 
of a usize, though it does not have a well-defined value (its slot is empty). If 
you assign a value to that variable, such as with x = 6, that region of memory 
will then hold the bits representing the value 6. &x does not change when you 
assign to x. If you declare multiple variables with the same name, they still 
end up with different chunks of memory backing them. This model matches 
the memory model used by C and C++, and many other low-level languages, 
and is useful for when you need to reason explicitly about memory.

N O T E  In this example, we ignore CPU registers and treat them as an optimization. In real-
ity, the compiler may use a register to back a variable instead of a region of memory if 
no memory address is needed for that variable.

You may find that one of these matches your previous model bet-
ter than the other, but I urge you to try to wrap your head around both 
of them. They are both equally valid, and both are simplifications, like 
any useful mental model has to be. If you are able to consider a piece of 
code from both of these perspectives, you will find it much easier to work 
through complicated code segments and understand why they do or do not 
compile and work as you expect.

Memory Regions
Now that you have a grip on how we refer to memory, we need to talk about 
what memory actually is. There are many different regions of memory, and 
perhaps surprisingly, not all of them are stored in the DRAM of your com-
puter. Which part of memory you use has a significant impact on how you 
write your code. The three most important regions for the purposes of writ-
ing Rust code are the stack, the heap, and static memory.

The Stack

The stack is a segment of memory that your program uses as scratch space 
for function calls. Each time a function is called, a contiguous chunk of 
memory called a frame is allocated at the top of the stack.  Near the bottom 
of the stack is the frame for the main function, and as functions call other 
functions, additional frames are pushed onto the stack. A function’s frame 
contains all the variables within that function, along with any arguments 
the function takes. When the function returns, its stack frame is reclaimed.

The bytes that make up the values of the function’s local variables are 
not immediately wiped, but it’s not safe to access them as they may have 
been overwritten by a subsequent function call whose frame overlaps with 
the reclaimed one. And even if they haven’t been overwritten, they may con-
tain values that are illegal to use, such as ones that were moved when the 
function returned.

Stack frames, and crucially the fact that they eventually disappear, are 
very closely tied to the notion of lifetimes in Rust. Any variable stored in a 
frame on the stack cannot be accessed after that frame goes away, so any 
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reference to it must have a lifetime that is at most as long as the lifetime of 
the frame.

The Heap

The heap is a pool of memory that isn’t tied to the current call stack of the 
program. Values in heap memory live until they are explicitly deallocated. 
This is useful when you want a value to live beyond the lifetime of the cur-
rent function’s frame. If that value is the function’s return value, the calling 
function can leave some space on its stack for the called function to write 
that value into before it returns. But if you want to, say, send that value to a 
different thread with which the current thread may share no stack frames at 
all, you can store it on the heap.

The heap allows you to explicitly allocate contiguous segments of 
 memory. When you do so, you get a pointer to the start of that segment 
of memory. That memory segment is reserved for you until you later deal-
locate it; this process is often referred to as freeing, after the name of the 
corresponding function in the C standard library. Since allocations from 
the heap do not go away when a function returns, you can allocate memory 
for a value in one place, pass the pointer to it to another thread, and have 
that thread safely continue to operate on that value. Or, phrased differ-
ently, when you heap-allocate memory, the resulting pointer has an uncon-
strained lifetime—its lifetime is however long your program keeps it alive.

The primary mechanism for interacting with the heap in Rust is the Box 
type. When you write Box::new(value), the value is placed on the heap, and 
what you are given back (the Box<T>) is a pointer to that value on the heap. 
When the Box is eventually dropped, that memory is freed.

If you forget to deallocate heap memory, it will stick around forever, and 
your application will eventually eat up all the memory on your machine. This 
is called leaking memory and is usually something you want to avoid. However, 
there are some cases where you explicitly want to leak memory. For example, 
say you have a read-only configuration that the entire program should be 
able to access. You can allocate that on the heap and explicitly leak it with 
Box::leak to get a 'static reference to it.

Static Memory

Static memory is really a catch-all term for several closely related regions 
located in the file your program is compiled into. These regions are 
automatically loaded into your program’s memory when that program is 
executed. Values in static memory live for the entire execution of your pro-
gram. Your program’s static memory contains the program’s binary code, 
which is usually mapped as read-only. As your program executes, it walks 
through the binary code in the text segment instruction by instruction and 
jumps around whenever a function is called. Static memory also holds the 
memory for variables you declare with the static keyword, as well as certain 
constant values in your code, like strings.

The special lifetime 'static, which gets its name from the static memory 
region, marks a reference as being valid for “as long as static memory is 
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around,” which is until the program shuts down. Since a static variable’s 
memory is allocated when the program starts, a reference to a variable in 
static memory is, by definition, 'static, as it is not deallocated until the pro-
gram shuts down. The inverse is not true—there can be 'static references 
that do not point to static memory—but the name is still appropriate: once 
you create a reference with a static lifetime, whatever it points to might as 
well be in static memory as far as the rest of the program is concerned, as it 
can be used for however long your program wishes.

You will encounter the 'static lifetime much more often than you will 
encounter truly static memory (through the static keyword, for example) 
when working with Rust. This is because 'static often shows up in trait 
bounds on type parameters. A bound like T: 'static indicates that the type 
parameter T is able to live for however long we keep it around for, up to and 
including the remaining execution of the program. Essentially, this bound 
requires that T is owned and self-sufficient, either in that it does not bor-
row other (non-static) values or that anything it does borrow is also 'static 
and thus will stick around until the end of the program. A good example 
of 'static as a bound is the std::thread::spawn function that creates a new 
thread, which requires that the closure you pass it is 'static. Since the new 
thread may outlive the current thread, the new thread cannot refer to any-
thing stored on the old thread’s stack. The new thread can refer only to 
values that will live for its entire lifetime, which may be for the remaining 
duration of the program.

N O T E  You may wonder how const differs from static. The const keyword declares the fol-
lowing item as constant. Constant items can be completely computed at compile time, 
and any code that refers to them is replaced with the constant’s computed value dur-
ing compilation. A constant has no memory or other storage associated with it (it is 
not a place). You can think of constant as a convenient name for a particular value.

Ownership
Rust’s memory model centers on the idea that all values have a single 
owner—that is, exactly one location (usually a scope) is responsible for 
ultimately deallocating each value. This is enforced through the borrow 
checker. If the value is moved, such as by assigning it to a new variable, 
pushing it to a vector, or placing it on the heap, the ownership of the value 
moves from the old location to the new one. At that point, you can no lon-
ger access the value through variables that flow from the original owner, 
even though the bits that make up the value are technically still there. 
Instead, you must access the moved value through variables that refer 
to its new location.

Some types are rebels and do not follow this rule. If a value’s type imple-
ments the special Copy trait, the value is not considered to have moved even 
if it is reassigned to a new memory location. Instead, the value is copied, 
and both the old and new locations remain accessible. Essentially, another 
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identical instance of that same value is constructed at the destination of the 
move. Most primitive types in Rust, such as the integer and floating-point 
types, are Copy. To be Copy, it must be possible to duplicate the type’s values 
simply by copying their bits. This eliminates all types that contain non-Copy 
types as well as any type that owns a resource it must deallocate when the 
value is dropped.

To see why, consider what would happen if a type like Box were Copy. 
If we executed box2 = box1, then box1 and box2 would both believe that 
they owned the heap memory allocated for the box, and they would both 
attempt to free it when they went out of scope. Freeing the memory twice 
could have catastrophic consequences.

When a value’s owner no longer has use for it, it is the owner’s responsi-
bility to do any necessary cleanup for that value by dropping it. In Rust, drop-
ping happens automatically when the variable that holds the value is no 
longer in scope. Types usually recursively drop values they contain, so drop-
ping a variable of a complex type may result in many values being dropped. 
Because of Rust’s discrete ownership requirement, we cannot accidentally 
drop the same value multiple times. A variable that holds a reference to 
another value does not own that other value, so the value isn’t dropped 
when the variable drops.

The code in Listing 1-3 gives a quick summary of the rules around own-
ership, move and copy semantics, and dropping.

let x1 = 42;
let y1 = Box::new(84);
{ // starts a new scope
1 let z = (x1, y1);
  // z goes out of scope, and is dropped;
  // it in turn drops the values from x1 and y1
2 }
// x1's value is Copy, so it was not moved into z
3 let x2 = x1;
// y1's value is not Copy, so it was moved into z
4 // let y2 = y1;

Listing 1-3: Moving and copying semantics

We start out with two values, the number 42 and a Box (a heap- allocated 
value) containing the number 84. The former is Copy, whereas the latter is 
not. When we place x1 and y1 into the tuple z 1, x1 is copied into z, whereas 
y1 is moved into z. At this point, x1 continues to be accessible and can be 
used again 3. On the other hand, y1 is rendered inaccessible once its value 
has been moved 4, and any attempt to access it would incur a compiler 
error. When z goes out of scope 2, the tuple value it contains is dropped, 
and this in turn drops the value copied from x1 and the one moved from y1. 
When the Box from y1 is dropped, it also deallocates the heap memory used 
to store y1’s value.
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DROP OR DER

Rust automatically drops values when they go out of scope, such as x1 and y1 
in the inner scope in Listing 1-3 . The rules for the order in which to drop are 
fairly simple: variables (including function arguments) are dropped in reverse 
order, and nested values are dropped in source-code order .

This might sound weird at first—why the discrepancy? If we look at it 
closely, though, it makes a lot of sense . Say you write a function that declares 
a string and then inserts a reference to that string into a new hash table . When 
the function returns, the hash table must be dropped first; if the string were 
dropped first, the hash table would then hold an invalid reference! In general, 
later variables may contain references to earlier values, whereas the inverse 
cannot happen due to Rust’s lifetime rules . And for that reason, Rust drops vari-
ables in reverse order .

Now, we could have the same behavior for nested values, like the values 
in a tuple, array, or struct, but that would likely surprise users . If you constructed 
an array that contained two values, it’d seem odd if the last element of the array 
were dropped first . The same applies to tuples and structs, where the most intui-
tive behavior is for the first tuple element or field to be dropped first, then the 
second, and so on . Unlike for variables, there is no need to reverse the drop 
order in this case, since Rust doesn’t (currently) allow self-references in a single 
value . So, Rust goes with the intuitive option .

Borrowing and Lifetimes
Rust allows the owner of a value to lend out that value to others, without 
giving up ownership, through references. References are pointers that come 
with an additional contract for how they can be used, such as whether the 
reference provides exclusive access to the referenced value, or whether the 
referenced value may also have other references point to it.

Shared References
A shared reference, &T, is, as the name implies, a pointer that may be 
shared. Any number of other references may exist to the same value, and 
each shared reference is Copy, so you can trivially make more of them. 
Values behind shared references are not mutable; you cannot modify or 
reassign the value a shared reference points to, nor can you cast a shared 
reference to a mutable one.

The Rust compiler is allowed to assume that the value a shared refer-
ence points to will not change while that reference lives. For example, if the 
Rust compiler sees that the value behind a shared reference is read multiple 
times in a function, it is within its rights to read it only once and reuse that 
value. More concretely, the assertion in Listing 1-4 should never fail.
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fn cache(input: &i32, sum: &mut i32) {
  *sum = *input + *input;
  assert_eq!(*sum, 2 * *input);
}

Listing 1-4: Rust assumes that shared references are immutable.

Whether or not the compiler chooses to apply a given optimization is 
more or less irrelevant. The compiler heuristics change over time, so you 
generally want to code against what the compiler is allowed to do rather 
than what it actually does in a particular case at a particular moment 
in time.

Mutable References
The alternative to a shared reference is a mutable reference: &mut T. With 
mutable references, the Rust compiler is again allowed to make full use of 
the contract that the reference comes with: the compiler assumes that there 
are no other threads accessing the target value, whether through a shared 
reference or a mutable one. In other words, it assumes that the mutable 
reference is exclusive. This enables some interesting optimizations that are 
not readily available in other languages. Take, for example, the code in 
Listing 1-5.

fn noalias(input: &i32, output: &mut i32) {
  if *input == 1 {
   1 *output = 2;
  }
2 if *input != 1 {
     *output = 3;
  }
}

Listing 1-5: Rust assumes that mutable references are exclusive.

In Rust, the compiler can assume that input and output do not point to 
the same memory. Therefore, the reassignment of output at 1 cannot affect 
the check at 2, and the entire function can be compiled as a single if-else 
block. If the compiler could not rely on the exclusive mutability contract, 
that optimization would be invalid, since an input of 1 could then result in 
an output of 3 in a case like noalias(&x, &mut x).

A mutable reference lets you mutate only the memory location that 
the reference points to. Whether you can mutate values that lie beyond the 
immediate reference depends on the methods provided by the type that lies 
between. This may be easier to understand with an example, so consider 
Listing 1-6.

let x = 42;
let mut y = &x; // y is of type &i32
let z = &mut y; // z is of type &mut &i32

Listing 1-6: Mutability applies only to the immediately referenced memory.
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In this example, you are able to change the value of the pointer y to a 
different value (that is, a different pointer) by making it reference a differ-
ent variable, but you cannot change the value that is pointed to (that is, the 
value of x). Similarly, you can change the pointer value of y through z, but 
you cannot change z itself to hold a different reference.

The primary difference between owning a value and having a mutable 
reference to it is that the owner is responsible for dropping the value when 
it is no longer necessary. Apart from that, you can do anything through a 
mutable reference that you can if you own the value, with one caveat: if you 
move the value behind the mutable reference, then you must leave another 
value in its place. If you did not, the owner would still think it needed to 
drop the value, but there would be no value for it to drop!

Listing 1-7 gives an example of the ways in which you can move the 
value behind a mutable reference.

fn replace_with_84(s: &mut Box<i32>) {
  // this is not okay, as *s would be empty:
1 // let was = *s;
  // but this is:
2 let was = std::mem::take(s);
  // so is this:
3 *s = was;
  // we can exchange values behind &mut:
  let mut r = Box::new(84);
4 std::mem::swap(s, &mut r);
  assert_ne!(*r, 84);
}
let mut s = Box::new(42);
replace_with_84(&mut s);
5

Listing 1-7: Access through a mutable reference must leave a value behind.

I’ve added commented-out lines that represent illegal operations. You 
cannot simply move the value out 1 since the caller would still think they 
owned that value and would free it again at 5, leading to a double free. If 
you just want to leave some valid value behind, std::mem::take 2 is a good can-
didate. It is equivalent to std::mem::replace(&mut value, Default::default()); it 
moves value out from behind the mutable reference but leaves a new, default 
value for the type in its place. The default is a separate, owned value, so it is 
safe for the caller to drop it when the scope ends at 5.

Alternatively, if you don’t need the old value behind the reference, you 
can overwrite it with a value that you already own 3, leaving it to the caller 
to drop the value later. When you do this, the value that used to be behind 
the mutable reference is dropped immediately.

Finally, if you have two mutable references, you can swap their values 
without owning either of them 4, since both references will end up with a 
legal owned value for their owners to eventually free.
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Interior Mutability
Some types provide interior mutability, meaning they allow you to mutate a 
value through a shared reference. These types usually rely on additional 
mechanisms (like atomic CPU instructions) or invariants to provide safe 
mutability without relying on the semantics of exclusive references. These 
normally fall into two categories: those that let you get a mutable reference 
through a shared reference, and those that let you replace a value given 
only a shared reference.

The first category consists of types like Mutex and RefCell, which con-
tain safety mechanisms to ensure that, for any value they give a mutable 
reference to, only one mutable reference (and no shared references) can 
exist at a time. Under the hood, these types (and those like them) all rely 
on a type called UnsafeCell, whose name should immediately make you 
hesitate to use it. We will cover UnsafeCell in more detail in Chapter 9, but 
for now you should know that it is the only correct way to mutate through 
a shared reference.

Other categories of types that provide interior mutability are those that 
do not give out a mutable reference to the inner value but instead just give 
you methods for manipulating that value in place. The atomic integer types 
in std::sync::atomic and the std::cell::Cell type fall into this category. You 
cannot get a reference directly to the usize or i32 behind such a type, but 
you can read and replace its value at a given point in time.

N O T E  The Cell type in the standard library is an interesting example of safe interior muta-
bility through invariants. It is not shareable across threads and never gives out a 
reference to the value contained in the Cell. Instead, the methods all either replace the 
value entirely or return a copy of the contained value. Since no references can exist 
to the inner value, it is always okay to move it. And since Cell isn’t shareable across 
threads, the inner value will never be concurrently mutated even though mutation 
happens through a shared reference.

Lifetimes
If you’re reading this book, you’re probably already familiar with the con-
cept of lifetimes, likely through repeated notices from the compiler about 
lifetime rules violations. That level of understanding will serve you well 
for the majority of Rust code you will write, but as we dive deeper into the 
more complex parts of Rust, you will need a more rigorous mental model to 
work with.

Newer Rust developers are often taught to think of lifetimes as cor-
responding to scopes: a lifetime begins when you take a reference to some 
variable and ends when that variable is moved or goes out of scope. That’s 
often correct, and usually useful, but the reality is a little more complex. 
A lifetime is really a name for a region of code that some reference must be 
valid for. While a lifetime will frequently coincide with a scope, it does not 
have to, as we will see later in this section.
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Lifetimes and the Borrow Checker

At the heart of Rust lifetimes is the borrow checker. Whenever a reference 
with some lifetime 'a is used, the borrow checker checks that 'a is still alive. 
It does this by tracing the path back to where 'a starts—where the reference 
was taken—from the point of use and checking that there are no conflict-
ing uses along that path. This ensures that the reference still points to a 
value that it is safe to access. This is similar to the high-level “data flow” 
mental model we discussed earlier in the chapter; the compiler checks that 
the flow of the reference we are accessing does not conflict with any other 
parallel flows.

Listing 1-8 shows a simple code example with lifetime annotations for 
the reference to x.

let mut x = Box::new(42);
1 let r = &x;           // 'a
if rand() > 0.5 {
2 *x = 84;
} else {
3 println!("{}", r);  // 'a
}
4

Listing 1-8: Lifetimes do not need to be contiguous.

The lifetime starts at 1 when we take a reference to x. In the first 
branch 2, we then immediately try to modify x by changing its value to 84, 
which requires a &mut x. The borrow checker takes out a mutable reference 
to x and immediately checks its use. It finds no conflicting uses between 
when the reference was taken and when it was used, so it accepts the code. 
This may come as a surprise if you are used to thinking about lifetimes 
as scopes, since r is still in scope at 2 (it goes out of scope at 4). But the 
borrow checker is smart enough to realize that r is never used later if this 
branch is taken, and therefore it is fine for x to be mutably accessed here. 
Or, phrased differently, the lifetime created at 1 does not extend into this 
branch: there is no flow from r beyond 2, and therefore there are no con-
flicting flows. The borrow checker then finds the use of r in the print state-
ment at 3. It walks the path back to 1 and finds no conflicting uses (2 is 
not on that path), so it accepts this use as well.

If we were to add another use of r at 4 in Listing 1-8, the code would 
no longer compile. The lifetime 'a would then last from 1 all the way 
until 4 (the last use of r), and when the borrow checker checked our new 
use of r, it would discover a conflicting use at 2.

Lifetimes can get quite convoluted. In Listing 1-9 you can see an example 
of a lifetime that has holes, where it’s intermittently invalid between where it 
starts and where it ultimately ends.
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let mut x = Box::new(42);
1 let mut z = &x;          // 'a
for i in 0..100 {
2 println!("{}", z);     // 'a
3 x = Box::new(i);
4 z = &x;                // 'a
}
println!("{}", z);       // 'a

Listing 1-9: Lifetimes can have holes.

The lifetime starts at 1 when we take a reference to x. We then move 
out of x at 3, which ends the lifetime 'a because it is no longer valid. The 
borrow checker accepts this move by considering 'a ended at 2, which 
leaves no conflicting flows from x at 3. Then, we restart the lifetime by 
updating the reference in z 4. Regardless of whether the code now loops 
back around to 2 or continues to the final print statement, both of those 
uses now have a valid value to flow from, and there are no conflicting flows, 
so the borrow checker accepts the code!

Again, this aligns perfectly with the data-flow model of memory we dis-
cussed earlier. When x is moved, z stops existing. When we reassign z later, 
we are creating an entirely new variable that exists only from that point 
forward. It just so happens that that new variable is also named z. With that 
model in mind, this example is not weird.

N O T E  The borrow checker is, and has to be, conservative. If it’s unsure whether a borrow is 
valid, it rejects it, as the consequences of allowing an invalid borrow could be disas-
trous. The borrow checker keeps getting smarter, but there are times when it needs help 
to understand why a borrow is legal. This is part of why we have unsafe Rust.

Generic Lifetimes

Occasionally you need to store references within your own types. Those ref-
erences need to have a lifetime so that the borrow checker can check their 
validity when they are used in the various methods on that type. This is 
especially true if you want a method on your type to return a reference that 
outlives the reference to self.

Rust lets you make a type definition generic over one or more lifetimes, 
just as it allows you to make it generic over types. The Rust Programming 
Language by Steve Klabnik and Carol Nichols (No Starch Press, 2018) covers 
this topic in some detail, so I won’t reiterate the basics here. But as you write 
more complex types of this nature, there are two subtleties around the 
interaction between such types and lifetimes that you should be aware of.

First, if your type also implements Drop, then dropping your type counts 
as a use of any lifetime or type your type is generic over. Essentially, when 
an instance of your type is dropped, the borrow checker will check that it’s 
still legal to use any of your type’s generic lifetimes before dropping it. This 
is necessary in case your drop code does use any of those references. If your 
type does not implement Drop, dropping the type does not count as a use, 
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and users are free to ignore any references stored in your type as long as 
they do not use it anymore, like we saw in Listing 1-7. We’ll talk more about 
these rules around dropping in Chapter 9.

Second, while a type can be generic over multiple lifetimes, making 
it so often only serves to unnecessarily complicate your type signature. 
Usually, a type being generic over a single lifetime is fine, and the compiler 
will use the shorter of the lifetimes for any references inserted into your 
type as that one lifetime. You should only really use multiple generic life-
time parameters if you have a type that contains multiple references, and its 
methods return references that should be tied to the lifetime of only one of 
those references. 

Consider the type in Listing 1-10, which gives you an iterator over parts 
of a string separated by a particular other string.

struct StrSplit<'s, 'p> {
  delimiter: &'p str,
  document: &'s str,
}
impl<'s, 'p> Iterator for StrSplit<'s, 'p> {
  type Item = &'s str;
  fn next(&self) -> Option<Self::Item> {
    todo!()
  }
}
fn str_before(s: &str, c: char) -> Option<&str> {
  StrSplit { document: s, delimiter: &c.to_string() }.next()
}

Listing 1-10: A type that needs to be generic over multiple lifetimes

When you construct this type, you have to give the delimiter and docu-
ment to search, both of which are references to string values. When you ask 
for the next string, you get a reference into the document. Consider what 
would happen if you used a single lifetime in this type. The values yielded 
by the iterator would be tied to the lifetime of the document and the delimiter. 
This would make str_before impossible to write: the return type would have 
a lifetime associated with a variable local to the function—the String pro-
duced by to_string—and the borrow checker would reject the code.

Lifetime Variance

Variance is a concept that programmers are often exposed to but rarely 
know the name of because it’s mostly invisible. At a glance, variance 
describes what types are subtypes of other types and when a subtype can be 
used in place of a supertype (and vice versa). Broadly speaking, a type A is 
a subtype of another type B if A is at least as useful as B. Variance is the rea-
son why, in Java, you can pass a Turtle to a function that accepts an Animal if 
Turtle is a subtype of Animal, or why, in Rust, you can pass a &'static str to a 
function that accepts a &'a str. 

While variance usually hides out of sight, it comes up often enough 
that we need to have a working knowledge of it. Turtle is a subtype of Animal 
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because a Turtle is more “useful” than some unspecified Animal—a Turtle 
can do anything an Animal can do, and likely more. Similarly, 'static is a 
subtype of 'a because a 'static lives at least as long as any 'a and so is more 
useful. Or, more generally, if 'b: 'a ('b outlives 'a), then 'b is a subtype of 
'a. This is obviously not the formal definition, but it gets close enough to be 
of practical use.

All types have a variance, which defines what other similar types can 
be used in that type’s place. There are three kinds of variance: covariant, 
invariant, and contravariant. A type is covariant if you can just use a subtype 
in place of the type. For example, if a variable is of type &'a T, you can pro-
vide a value of type &'static T to it, because &'a T is covariant in 'a. &'a T is 
also covariant in T, so you can pass a &Vec<&'static str> to a function that 
takes &Vec<&'a str>.

Some types are invariant, which means that you must provide exactly 
the given type. &mut T is an example of this—if a function takes a &mut 
Vec<&'a str>, you cannot pass it a &mut Vec<&'static str>. That is, &mut T is 
invariant in T. If you could, the function could put a short-lived string inside 
the Vec, which the caller would then continue using, thinking that it were a 
Vec<&'static str> and thus that the contained string were 'static! Any type 
that provides mutability is generally invariant for the same reason—for 
example, Cell<T> is invariant in T.

The last category, contravariance, comes up for function arguments. 
Function types are more useful if they’re okay with their arguments being 
less useful. This is clearer if you contrast the variance of the argument types 
on their own with their variance when used as function arguments:

let x: &'static str; // more useful, lives longer
let x: &'a      str; // less useful, lives shorter

fn take_func1(&'static str) // stricter, so less useful
fn take_func2(&'a str)      // less strict, more useful

This flipped relationship indicates that Fn(T) is contravariant in T.
So why do you need to learn about variance when it comes to lifetimes? 

Variance becomes relevant when you consider how generic lifetime param-
eters interact with the borrow checker. Consider a type like the one shown 
in Listing 1-11, which uses multiple lifetimes in a single field.

struct MutStr<'a, 'b> {
  s: &'a mut &'b str
}
let mut s = "hello";
1 *MutStr { s: &mut s }.s = "world";
println!("{}", s);

Listing 1-11: A type that needs to be generic over multiple lifetimes

At first glance, using two lifetimes here seems unnecessary—we have no 
methods that need to differentiate between a borrow of different parts of 
the structure, as we did with StrSplit in Listing 1-10. But if you replace the 
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two lifetimes here with a single 'a, the code no longer compiles! And it’s all 
because of variance.

N O T E  The syntax at 1 may seem alien. It’s equivalent to defining a variable x holding 
a MutStr and then writing *x.s = "world", except that there’s no variable and so the 
MutStr is dropped immediately.

At 1, the compiler must determine what lifetime the lifetime para-
meter(s) should be set to. If there are two lifetimes, 'a is set to the to-be-
determined lifetime of the borrow of s, and 'b is set to 'static since that’s 
the lifetime of the provided string "hello". If there is just one lifetime 'a, the 
compiler infers that that lifetime must be 'static. 

When we later attempt to access the string reference s through a shared 
reference to print it, the compiler tries to shorten the mutable borrow of s 
used by MutStr to allow the shared borrow of s.

In the two-lifetime case, 'a simply ends just before the println, and 'b 
stays the same. In the single-lifetime case, on the other hand, we run into 
issues. The compiler wants to shorten the borrow of s, but to do so, it would 
also have to shorten the borrow of the str. While &'static str can in general 
be shortened to any &'a str (&'a T is covariant in 'a), here it’s behind a &mut 
T, which is invariant in T. Invariance requires that the relevant type is never 
replaced with a sub- or supertype, so the compiler’s attempt to shorten the 
borrow fails, and it reports that the list is still mutably borrowed. Ouch!

Because of the reduced flexibility imposed by invariance, you want to 
ensure that your types remain covariant (or contravariant where appropri-
ate) over as many of their generic parameters as possible. If that requires 
introducing additional lifetime arguments, you need to carefully weigh the 
cognitive cost of adding another parameter against the ergonomic cost of 
invariance.

Summary
The aim of this chapter has been to establish a solid, shared foundation 
that we can build on in the chapters to come. By now, I hope you feel that 
you have a firm grasp on Rust’s memory and ownership model, and that 
those errors you may have gotten from the borrow checker seem less mys-
terious. You might have known bits and pieces of what we covered here 
already, but hopefully the chapter has given you a more holistic image of 
how it all fits together. In the next chapter, we will do something similar for 
types. We’ll go over how types are represented in memory, see how gener-
ics and traits produce running code, and take a look at some of the special 
type and trait constructs Rust offers for more advanced use cases.





2
T Y P E S

Now that the fundamentals are out of the 
way, we’ll look at Rust’s type system. We’ll 

skip past the basics covered in The Rust 
Programming Language and instead dive head-

first into how different types are laid out in memory, 
the ins and outs of traits and trait bounds, existen-
tial types, and the rules for using types across crate 
boundaries.

Types in Memory
Every Rust value has a type. Types serve many purposes in Rust, as we’ll see 
in this chapter, but one of their most fundamental roles is to tell you how to 
interpret bits of memory. For example, the sequence of bits 0b10111101 (writ-
ten in hexadecimal notation as 0xBD) does not mean anything in and of itself 
until you assign it a type. When interpreted under the type u8, that sequence 
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of bits is the number 189. When interpreted under the type i8, it is –67. When 
you define your own types, it’s the compiler’s job to determine where each 
part of the defined type goes in the in-memory representation for that type. 
Where does each field of your struct appear in the sequence of bits? Where is 
the discriminant for your enum stored? It’s important to understand how this 
process works as you begin to write more advanced Rust code, because these 
details affect both the correctness and the performance of your code.

Alignment
Before we talk about how a type’s in-memory representation is determined, 
we first need to discuss the notion of alignment, which dictates where the 
bytes for a type can be stored. Once a type’s representation has been deter-
mined, you might think you can take any arbitrary memory location and 
interpret the bytes stored there as that type. While that is true in a theoreti-
cal sense, in practice the hardware also constrains where a given type can 
be placed. The most obvious example of this is that pointers point to bytes, 
not bits. If you placed a value of type T starting at bit 4 of your computer’s 
memory, you would have no way to refer to its location; you can create a 
pointer pointing only to byte 0 or byte 1 (bit 8). For this reason, all values, 
no matter their type, must start at a byte boundary. We say that all values 
must be at least byte-aligned—they must be placed at an address that is a 
multiple of 8 bits.

Some values have more stringent alignment rules than just being byte-
aligned. In the CPU and the memory system, memory is often accessed in 
blocks larger than a single byte. For example, on a 64-bit CPU, most values 
are accessed in chunks of 8 bytes (64 bits), with each operation starting at 
an 8-byte-aligned address. This is referred to as the CPU’s word size. The 
CPU then uses some cleverness to handle reading and writing smaller val-
ues, or values that span the boundaries of these chunks.

Where possible, you want to ensure that the hardware can operate in its 
“native” alignment. To see why, consider what happens if you try to read an 
i64 that starts in the middle of an 8-byte block (that is, the pointer to it is not 
8-byte-aligned). The hardware will have to do two reads—one from the sec-
ond half of the first block to get to the start of the i64, and one from the first 
half of the second block to read the rest of the i64—and then splice the results 
together. This is not very efficient. Since the operation is spread across multiple 
accesses to the underlying memory, you may also end up with strange results 
if the memory you’re reading from is concurrently written to by a different 
thread. You might read the first 4 bytes before the other thread’s write has 
happened and the second 4 bytes after, resulting in a corrupted value.

Operations on data that is not aligned are referred to as misaligned 
accesses and can lead to poor performance and bad concurrency prob-
lems. For this reason, many CPU operations require, or strongly prefer, 
that their arguments are naturally aligned. A naturally aligned value is one 
whose alignment matches its size. So, for example, for an 8-byte load, the 
provided address would need to be 8-byte-aligned.

Since aligned accesses are generally faster and provide stronger con-
sistency semantics, the compiler tries to take advantage of them where 
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possible. It does this by giving every type an alignment that’s computed 
based on the types that it contains. Built-in values are usually aligned to 
their size, so a u8 is byte-aligned, a u16 is 2-byte-aligned, a u32 is 4-byte-
aligned, and a u64 is 8-byte-aligned. Complex types—types that contain 
other types—are typically assigned the largest alignment of any type they 
contain. For example, a type that contains a u8, a u16, and a u32 will be 
4-byte-aligned because of the u32.

Layout
Now that you know about alignment, we can explore how the compiler 
decides on the in-memory representation, known as the layout, of a type. 
By default, as you’ll see shortly, the Rust compiler gives very few guarantees 
about how it lays out types, which makes for a poor starting point for under-
standing the underlying principles. Luckily, Rust provides a repr attribute 
you can add to your type definitions to request a particular in-memory rep-
resentation for that type. The most common one you will see, if you see one 
at all, is repr(C). As the name suggests, it lays out the type in a way that is 
compatible with how a C or C++ compiler would lay out the same type. This 
is helpful when writing Rust code that interfaces with other languages using 
the foreign-function interface, which we’ll talk about in Chapter 11, as Rust 
will generate a layout that matches the expectations of the other language’s 
compiler. Since the C layout is predictable and not subject to change, repr(C) 
is also useful in unsafe contexts if you’re working with raw pointers into the 
type, or if you need to cast between two different types that you know have 
the same fields. And, of course, it is perfect for taking our first steps into 
layout algorithms.

N O T E  Another useful representation is repr(transparent), which can be used only on types 
with a single field and which guarantees that the layout of the outer type is exactly the 
same as that of the inner type. This comes in handy in combination with the “newtype” 
 pattern, where you may want to operate on the in-memory representations of some 
struct A and struct NewA(A) as if they were the same. Without repr(transparent), the 
Rust compiler does not guarantee that they will have the same layout.

So, let’s look how the compiler would lay out a particular type with 
repr(C): the Foo type in Listing 2-1. How do you think the compiler would lay 
this out in memory?

#[repr(C)]
struct Foo {
  tiny: bool,
  normal: u32,
  small: u8,
  long: u64,
  short: u16,
}

Listing 2-1: Alignment affects layout.
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First the compiler sees the field tiny, whose logical size is 1 bit (true or 
false). But since the CPU and memory operate in terms of bytes, tiny is 
given 1 byte in the in-memory representation. Next, normal is a 4-byte type, 
so we want it to be 4-byte-aligned. But even if Foo is aligned, the 1 byte we 
allocated to tiny is going to make normal miss its alignment. To rectify this, 
the compiler inserts 3 bytes of padding—bytes with an indeterminate value 
that are ignored in user code—into the in-memory representation between 
tiny and normal. No values go into the padding, but it does take up space.

For the next field, small, alignment is simple: it’s a 1-byte value, and 
the current byte offset into the struct is 1 + 3 + 4 = 8. This is already byte-
aligned, so small can go immediately after normal. With long we have a 
problem again, though. We are now 1 + 3 + 4 + 1 = 9 bytes into Foo. If Foo is 
aligned, then long is not 8-byte-aligned the way we want it to be, so we must 
insert another 7 bytes of padding to make long aligned again. This also 
conveniently ensures the 2-byte alignment we need for the last field, short, 
bringing the total to 26 bytes. Now that we’ve gone through all the fields, 
we also need to determine the alignment of Foo itself. The rule here is to 
use the largest alignment of any of Foo’s fields, which will be 8 bytes because 
of long. So, to ensure that Foo remains aligned if placed in, say, an array, the 
compiler then adds a final 6 bytes of padding to make Foo’s size a multiple 
of its alignment at 32 bytes.

Now we are ready to shed the C legacy and consider what would hap-
pen to the layout if we did not use repr(C) in Listing 2-1. One of the primary 
limitations of the C representation is that it requires that we place all fields 
in the same order that they appear in the original struct definition. The 
default Rust representation repr(Rust) removes that limitation, along with a 
couple of other lesser restrictions, such as deterministic field ordering for 
types that happen to have the same fields. That is, even two different types 
that share all the same fields, of the same type, in the same order, are not 
guaranteed to be laid out the same when using the default Rust layout!

Since we’re now allowed to reorder the fields, we can place them 
in decreasing order of size. This means we no longer need the padding 
between Foo’s fields; the fields themselves are used to achieve the necessary 
alignment! Foo is now just the size of its fields: only 16 bytes. This is one of 
the reasons why Rust by default does not give many guarantees about how a 
type is laid out in memory: by giving the compiler more leeway to rearrange 
things, we can produce more efficient code.

It turns out there’s also a third way to lay out a type, and that is to tell 
the compiler that we do not want any padding between our fields. In doing 
so, we’re saying that we are willing to take the performance hit of using 
misaligned accesses. The most common use case for this is when the impact 
of every additional byte of memory can be felt, such as if you have a lot of 
instances of the type, if you have very limited memory, or if you’re sending 
the in-memory representation over a lower-bandwidth medium like a network 
connection. To opt in to this behavior, you can annotate your type with 
#[repr(packed)]. Keep in mind that this may lead to much slower code, and 
in extreme cases, this can cause your program to crash if you try to perform 
operations that the CPU supports only on aligned arguments.
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Sometimes, you want to give a particular field or type a larger align-
ment than it technically requires. You can do that using the attribute 
#[repr(align(n))]. A common use case for this is to ensure that different 
values stored contiguously in memory (like in an array) end up in differ-
ent cache lines on the CPU. That way, you avoid false sharing, which can 
cause huge performance degradations in concurrent programs. False shar-
ing occurs when two different CPUs access different values that happen 
to share a cache line; while they can theoretically operate in parallel, they 
both end up contending to update the same single entry in the cache. We’ll 
talk about concurrency in much greater detail in Chapter 10.

Complex Types
You might be curious about how the compiler represents other Rust types in 
memory. Here’s a quick reference:

Tuple  Represented like a struct with fields of the same type as the 
tuple values in the same order.

Array  Represented as a contiguous sequence of the contained type 
with no padding between the elements.

Union  Layout is chosen independently for each variant. Alignment is 
the maximum across all the variants.

Enumeration  Same as union, but with one additional hidden shared 
field that stores the enum variant discriminant. The discriminant is the 
value the code uses to determine which of the enum variants a given 
value holds. The size of the discriminant field depends on the number 
of variants.

Dynamically Sized Types and Wide Pointers
You may have come across the marker trait Sized in various odd corners 
of the Rust documentation and in error messages. Usually, it comes up 
because the compiler wants you to provide a type that is Sized, but you 
(apparently) did not. Most types in Rust implement Sized automatically—
that is, they have a size that’s known at compile time—but two common 
types do not: trait objects and slices. If you have, for example, a dyn Iterator 
or a [u8], those do not have a well-defined size. Their size depends on some 
information that is known only when the program runs and not at com-
pile time, which is why they are called dynamically sized types (DSTs). Nobody 
knows ahead of time whether the dyn Iterator your function received is this 
200-byte struct or that 8-byte struct. This presents a problem: often the 
compiler must know the size of something in order to produce valid code, 
such as how much space to allocate to a tuple of type (i32, dyn Iterator, 
[u8], i32) or what offset to use if your code tries to access the fourth field. 
But if the type isn’t Sized, that information isn’t available.

The compiler requires types to be Sized nearly everywhere. Struct fields, 
function arguments, return values, variable types, and array types must all 
be Sized. This restriction is so common that every single type bound you 
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write includes T: Sized unless you explicitly opt out of it with T: ?Sized (the 
? means “may not be”). But this is pretty unhelpful if you have a DST and 
want to do something with it, like if you really want your function to accept 
a trait object or a slice as an argument.

The way to bridge this gap between unsized and sized types is to place 
unsized types behind a wide pointer (also known as a fat pointer). A wide 
pointer is just like a normal pointer, but it includes an extra word-sized field 
that gives the additional information about that pointer that the compiler 
needs to generate reasonable code for working with the pointer. When you 
take a reference to a DST, the compiler automatically constructs a wide 
pointer for you. For a slice, the extra information is simply the length of the 
slice. For a trait object—well, we’ll get to that later. And crucially, that wide 
pointer is Sized. Specifically, it is twice the size of a usize (the size of a word 
on the target platform): one usize for holding the pointer, and one usize for 
holding the extra information needed to “complete” the type. 

N O T E  Box and Arc also support storing wide pointers, which is why they both support  
T: ?Sized.

Traits and Trait Bounds
Traits are a key piece of Rust’s type system—they are the glue that allows 
types to interoperate even though they don’t know about each other at the 
time they are defined. The Rust Programming Language does a great job of 
covering how to define and use traits, so I won’t go over that here. Instead, 
we’re going to take a look at some of the more technical aspects of traits: 
how they’re implemented, restrictions you have to adhere to, and some 
more esoteric uses of traits.

Compilation and Dispatch
By now, you’ve probably written a decent amount of generic code in Rust. 
You’ve used generic type parameters on types and methods, and maybe 
even a few trait bounds here and there. But have you ever wondered what 
actually happens to generic code when you compile it, or what happens 
when you call a trait method on a dyn Trait?

When you write a type or function that is generic over T, you’re really 
telling the compiler to make a copy of that type or function for each type 
T. When you construct a Vec<i32> or a HashMap<String, bool>, the compiler 
essentially copy-pastes the generic type and all its implementation blocks 
and replaces all instances of each generic parameter with the concrete type 
you provided. It makes a full copy of the Vec type with every T replaced with 
i32, and a full copy of the HashMap type with every K replaced with String and 
every V with bool.

N O T E  In reality, the compiler does not actually do a full copy-paste. It copies only parts of 
the code that you use, so if you never call find on a Vec<i32>, the code for find won’t 
be copied and compiled.
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The same thing applies to generic functions. Consider the code in 
Listing 2-2, which shows a generic method.

impl String {
  pub fn contains(&self, p: impl Pattern) -> bool {
    p.is_contained_in(self)
  }
}

Listing 2-2: A generic method using static dispatch

A copy of this method is made for every distinct pattern type (recall 
that impl Trait is shorthand for <T: Trait>). We need a different copy of 
the function body for each impl Pattern type because we need to know the 
address of the is_contained_in function to call it. The CPU needs to be told 
where to jump to and continue execution. For any given pattern, the com-
piler knows that that address is the address of the place where that pattern 
type implements that trait method. But there is no one address we could 
use for any type, so we need to have one copy for each type, each with its 
own address to jump to. This is referred to as static dispatch, since for any 
given copy of the method, the address we are “dispatching to” is known 
statically.

N O T E  You may have noticed that the word “static” is a little overloaded in this context. 
Static is generally used to refer to anything that is known at compile time, or can be 
treated as though it were, since it can then be written into static memory, as we dis-
cussed in Chapter 1.

This process of going from a generic type to many non-generic types 
is called monomorphization, and it’s part of the reason generic Rust code 
usually performs just as well as non-generic code. By the time the com-
piler starts optimizing your code, it’s as if no generics were there at all! 
Each instance is optimized separately and with all of the types known. As 
a result, the code is just as efficient as if the is_contained_in method of the 
pattern that is passed in were called directly without any traits present. The 
compiler has full knowledge of the types involved and can even inline the 
implementation of is_contained_in if it wishes.

Monomorphization also comes at a cost: all those instantiations of your 
type need to be compiled separately, which can increase compile time if the 
compiler cannot optimize them away. Each monomorphized function also 
results in its own chunk of machine code, which can make your program 
larger. And because instructions aren’t shared between different instantia-
tions of a generic type’s methods, the CPU’s instruction cache is also less 
effective as it now needs to hold multiple copies of effectively the same 
instructions.
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NON- GENER IC INNER F UNC T IONS

Often, much of the code in a generic method is not type-dependent . Consider, 
for example, the implementation of HashMap::insert . The code to compute the 
hash of the supplied key depends on the key type of the map, but the code to 
walk the buckets of the map to find the insertion point may not . In cases like 
this, it would be more efficient to share the generated machine code for the 
non-generic parts of the method across monomorphizations, and only generate 
distinct copies where this is actually needed .

One pattern you can use for cases like this is to declare a non-generic 
helper function inside the generic method that performs the shared operations . 
This leaves only the type-dependent code for the compiler to copy-paste for you 
while allowing the helper function to be shared .

Making the function an inner function comes with the added benefit that 
you do not pollute your module with a single-purpose function . You can instead 
declare such a helper function outside the method instead; just be careful that 
you don’t make it a method under a generic impl block, as then it will still be 
monomorphized .

The alternative to static dispatch is dynamic dispatch, which enables 
code to call a trait method on a generic type without knowing what that 
type is. I said earlier that the reason we needed multiple instances of the 
method in Listing 2-2 was that otherwise your program wouldn’t know what 
address to jump to in order to call the trait method is_contained_in on the 
given pattern. Well, with dynamic dispatch, the caller simply tells you. If you 
replace impl Pattern with &dyn Pattern, you tell the caller that they must give 
two pieces of information for this argument: the address of the pattern and 
the address of the is_contained_in method. In practice, the caller gives us a 
pointer to a chunk of memory called a virtual method table, or vtable, that 
holds the address of the implementation of all the trait’s methods for the 
type in question, one of which is is_contained_in. When the code inside the 
method wants to call a trait method on the provided pattern, it looks up  
the address of that pattern’s implementation of is_contained_in in the vtable 
and then calls the function at that address. This allows us to use the same 
function body regardless of what type the caller wants to use.

N O T E  Every vtable also contains information about the concrete type’s layout and alignment 
since that information is always needed to work with a type. If you want an example of 
what an explicit vtable looks like, take a look at the std::task::RawWakerVTable type.

You’ll notice that when we opted in to dynamic dispatch using the dyn 
keyword, we had to place an & in front of it. The reason is that we no longer 
know at compile time the size of the pattern type that the caller passes in, so 
we don’t know how much space to set aside for it. In other words, dyn Trait 
is !Sized, where the ! means not. To make it Sized so we can take it as an 
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argument, we place it behind a pointer (which we know the size of). Since we 
also need to pass along the table of method addresses, this pointer becomes 
a wide pointer, where the extra word holds the pointer to the vtable. You can 
use any type that is able to hold a wide pointer for dynamic dispatch, such 
as &mut, Box, and Arc. Listing 2-3 shows the dynamic dispatch equivalent of 
Listing 2-2.

impl String {
  pub fn contains(&self, p: &dyn Pattern) -> bool {
    p.is_contained_in(&*self)
  }
}

Listing 2-3: A generic method using dynamic dispatch

The combination of a type that implements a trait and its vtable is 
known as a trait object. Most traits can be turned into trait objects, but not 
all. For example, the Clone trait, whose clone method returns Self, cannot 
be turned into a trait object. If we accept a dyn Clone trait object and then 
call clone on it, the compiler won’t know what type to return. Or, consider 
the Extend trait from the standard library, which has a method extend that 
is generic over the type of the provided iterator (so there may be many 
instances of it). If you were to call a method that took a dyn Extend, there 
would be no single address for extend to place in the trait object’s vtable; 
there would have to be one entry for every type extend might ever be called 
with. These are examples of traits that are not object-safe and therefore may 
not be turned into trait objects. To be object-safe, none of a trait’s methods 
can be generic or use the Self type. Furthermore, the trait cannot have any 
static methods (that is, methods whose first argument does not dereference 
to Self), since it would be impossible to know which instance of the method 
to call. It is not clear, for example, what code FromIterator::from_iter(&[0]) 
should execute.

When reading about trait objects, you may see mentions of the trait 
bound Self: Sized. Such a bound implies that Self is not being used through 
a trait object (since it would then be !Sized). You can place that bound on a 
trait to require that the trait never use dynamic dispatch, or you can place 
it on a specific method to make that method unavailable when the trait is 
accessed through a trait object. Methods with a where Self: Sized bound are 
exempted when checking if a trait is object-safe.

Dynamic dispatch cuts compile times, since it’s no longer necessary 
to compile multiple copies of types and methods, and it can improve the 
efficiency of your CPU instruction cache. However, it also prevents the com-
piler from optimizing for the specific types that are used. With dynamic 
dispatch, all the compiler can do for find in Listing 2-2 is insert a call to 
the function through the vtable—it can no longer perform any additional 
optimizations as it does not know what code will sit on the other side of that 
function call. Furthermore, every method call on a trait object requires a 
lookup in the vtable, which adds a small amount of overhead over calling 
the method directly.
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When you’re given the choice between static and dynamic dispatch, 
there is rarely a clear-cut right answer. Broadly speaking, though, you’ll 
want to use static dispatch in your libraries and dynamic dispatch in your 
binaries. In a library, you want to allow your users to decide what kind of 
dispatch is best for them, since you don’t know what their needs are. If you 
use dynamic dispatch, they’re forced to do the same, whereas if you use 
static dispatch, they can choose whether to use dynamic dispatch or not. In 
a binary, on the other hand, you’re writing the final code, so there are no 
needs to consider except those of the code you are writing. Dynamic dis-
patch often allows you to write cleaner code that leaves out generic param-
eters and will compile more quickly, all at a (usually) marginal performance 
cost, so it’s usually the better choice for binaries.

Generic Traits
Rust traits can be generic in one of two ways: with generic type parameters like 
trait Foo<T> or with associated types like trait Foo { type Bar; }. The difference 
between these is not immediately apparent, but luckily the rule of thumb is 
quite simple: use an associated type if you expect only one implementation of 
the trait for a given type, and use a generic type parameter otherwise.

The rationale for this is that associated types are often significantly 
easier to work with, but will not allow multiple implementations. So, more 
simply put, the advice is really just to use associated types whenever you can.

With a generic trait, users must always specify all the generic parame-
ters and repeat any bounds on those parameters. This can quickly get messy 
and hard to maintain. If you add a generic parameter to a trait, all users of 
that trait must also be updated to reflect the change. And since multiple 
implementations of a trait may exist for a given type, the compiler may have 
a hard time deciding which instance of the trait you meant to use, leading 
to awful disambiguating function calls like FromIterator::<u32>::from_iter.  
But the upside is that you can implement the trait multiple times for 
the same type—for example, you can implement PartialEq against mul-
tiple right-hand side types for your type, or you can implement both 
FromIterator<T> and FromIterator<&T> where T: Clone, precisely because of 
the flexibility that generic traits provide.

With associated types, on the other hand, the compiler needs to know 
only the type that implements the trait, and all the associated types follow 
(since there is only one implementation). This means the bounds can all live 
in the trait itself and do not need to be repeated on use. In turn, this allows 
the trait to add further associated types without affecting its users. And 
because the type dictates all the associated types of the trait, you never have 
to disambiguate with the unified function calling syntax shown in the previ-
ous paragraph. However, you cannot implement Deref against multiple Target 
types, nor can you implement Iterator with multiple different Item types.

Coherence and the Orphan Rule
Rust has some fairly strict rules about where you can implement traits and 
what types you can implement them on. These rules exist to preserve the 
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coherence property: for any given type and method, there is only ever one 
correct choice for which implementation of the method to use for that 
type. To see why this is important, consider what would happen if I could 
write my own implementation of the Display trait for the bool type from 
the standard library. Now, for any code that tries to print a bool value and 
includes my crate, the compiler won’t know whether to pick the implemen-
tation I wrote or the one from the standard library. Neither choice is cor-
rect or better than the other, and the compiler obviously cannot choose 
randomly. The same issue occurs if the standard library is not involved at 
all, but we instead have two crates that depend on each other, and they 
both implement a trait for some shared type. The coherence property 
ensures that the compiler never ends up in these situations and never has 
to make these choices: there will always be exactly one obvious choice.

A facile way to uphold coherence would be to ensure only the crate 
that defines a trait can write implementations for that trait; if no one else 
can implement the trait, then there can be no conflicting implementa-
tions elsewhere. However, this is too restrictive in practice and would 
essentially make traits useless, as there would be no way to implement 
traits like std::fmt::Debug and serde::Serialize for your own types, unless 
you got your own type included into the defining crate. The opposite 
extreme, saying that you can implement traits for only your own types, 
solves that problem but introduces another: a crate that defines a trait 
now cannot provide implementations of that trait for types in the stan-
dard library or in other popular crates! Ideally, we would like to find some 
set of rules that balances the desire for downstream crates to implement 
upstream traits for their own types against the desire for upstream crates 
to be able to add implementations of their own traits without breaking 
downstream code.

N O T E  Upstream refers to something your code depends on, and downstream refers to some-
thing that depends on your code. Often, these terms are used in the direct sense 
of crate dependencies, but they can also be used to refer to authoritative forks of a 
codebase—if you do a fork of the Rust compiler, the official Rust compiler is your 
“upstream.”

In Rust, the rule that establishes that balance is the orphan rule. Simply 
stated, the orphan rule says that you can implement a trait for a type only 
if the trait or the type is local to your crate. So, you can implement Debug for 
your own type, and you can implement MyNeatTrait for bool, but you cannot 
implement Debug for bool. If you try, your code will not compile, and the 
compiler will tell you that there are conflicting implementations.

This gets you pretty far; it allows you to implement your own traits for 
third-party types and to implement third-party traits for your own types. 
However, the orphan rule is not the end of the story. There are a number 
of additional implications, caveats, and exceptions to it that you should be 
aware of.
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Blanket Implementations

The orphan rule allows you to implement traits over a range of types with code 
like impl<T> MyTrait for T where T: and so on. This is a blanket implementation—it 
is not limited to just one particular type but instead applies to a wide range 
of types. Only the crate that defines a trait is allowed to write a blanket imple-
mentation, and adding a blanket implementation to an existing trait is consid-
ered a breaking change. If it were not, a downstream crate that contained impl 
MyTrait for Foo could suddenly stop compiling just because you update the 
crate that defines MyTrait with an error about a conflicting implementation.

Fundamental Types
Some types are so essential that it’s necessary to allow anyone to implement 
traits on them, even if this seemingly violates the orphan rule. These types 
are marked with the #[fundamental] attribute and currently include &, &mut, 
and Box. For the purposes of the orphan rule, fundamental types may as 
well not exist—they are effectively erased before the orphan rule is checked 
in order to allow you to, for example, implement IntoIterator for &MyType. 
With just the orphan rule, this implementation would not be permitted 
since it implements a foreign trait for a foreign type—IntoIterator and & 
both come from the standard library. Adding a blanket implementation 
over a fundamental type is also considered a breaking change.

Covered Implementations
There are some limited cases where we want to allow implementing a for-
eign trait for a foreign type, which the orphan rule does not normally allow. 
The simplest example of this is when you want to write something like impl 
From<MyType> for Vec<i32>. Here, the From trait is foreign, as is the Vec type, 
yet there is no danger of violating coherence. This is because a conflicting 
implementation could be added only through a blanket implementation in 
the standard library (the standard library cannot otherwise name MyType), 
which is a breaking change anyway.

To allow these kinds of implementations, the orphan rule includes 
a narrow exemption that permits implementing foreign traits for for-
eign types under a very specific set of circumstances. Specifically, a given 
impl<P1..=Pn> ForeignTrait<T1..=Tn> for T0 is allowed only if at least one Ti 
is a local type and no T before the first such Ti is one of the generic types 
P1..=Pn. Generic type parameters (Ps) are allowed to appear in T0..Ti as long 
as they are covered by some intermediate type. A T is covered if it appears as 
a type parameter to some other type (like Vec<T>), but not if it stands on its 
own (just T) or just appears behind a fundamental type like &T. So, all the 
implementations in Listing 2-4 are valid.

impl<T> From<T> for MyType
impl<T> From<T> for MyType<T>
impl<T> From<MyType> for Vec<T>
impl<T> ForeignTrait<MyType, T> for Vec<T>

Listing 2-4: Valid implementations of foreign traits for foreign types
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However, the implementations in Listing 2-5 are invalid.

impl<T> ForeignTrait for T
impl<T> From<T> for T
impl<T> From<Vec<T>> for T
impl<T> From<MyType<T>> for T
impl<T> From<T> for Vec<T>
impl<T> ForeignTrait<T, MyType> for Vec<T>

Listing 2-5: Invalid implementations of foreign traits for foreign types

This relaxation of the orphan rule complicates the rules for what con-
stitutes a breaking change when you add a new implementation for an exist-
ing trait. In particular, adding a new implementation to an existing trait 
is non-breaking only if it contains at least one new local type, and that new 
local type satisfies the rules for the exemption described earlier. Adding 
any other new implementation is a breaking change.

N O T E  Note that impl<T> ForeignTrait<LocalType, T> for ForeignType is valid, but  
impl<T> ForeignTrait<T, LocalType> for ForeignType is not! This may seem arbi-
trary, but without this rule, you could write impl<T> ForeignTrait<T, LocalType>  
for ForeignType, and another crate could write impl<T> ForeignTrait<TheirType, T> 
for ForeignType, and a conflict would arise only when the two crates were brought 
together. Instead of disallowing this pattern altogether, the orphan rule requires that 
your local type come before the type parameter, which breaks the tie and ensures that  
if both crates uphold coherence in isolation, they also uphold it when combined.

Trait Bounds
The standard library is flush with trait bounds, whether it’s that the keys in a 
HashMap must implement Hash + Eq or that the function given to thread::spawn 
must be FnOnce + Send + 'static. When you write generic code yourself, it 
will almost certainly include trait bounds, as otherwise your code cannot do 
much with the type it is generic over. As you write more elaborate generic 
implementations, you’ll find that you also need more fidelity from your trait 
bounds, so let’s look at some of the ways to achieve that.

First and foremost, trait bounds do not have to be of the form T: Trait 
where T is some type your implementation or type is generic over. The 
bounds can be arbitrary type restrictions and do not even need to include 
generic parameters, types of arguments, or local types. You can write a trait 
bound like where String: Clone, even though String: Clone is always true and 
contains no local types. You can also write where io::Error: From<MyError<T>>; 
your generic type parameters do not need to appear only on the left-hand 
side. This not only allows you to express more intricate bounds but also can 
save you from needlessly repeating bounds. For example, if your method 
wants to construct a HashMap<K, V, S> whose keys are some generic type T and 
whose value is a usize, instead of writing the bounds out like where T: Hash 
+ Eq, S: BuildHasher + Default, you could write where HashMap<T, usize, S>: 
FromIterator. This saves you from looking up the exact bounds requirements 
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for the methods you end up using and more clearly communicates the 
“true” requirement of your code. As you can see, it can also significantly 
reduce the complexity of your bounds if the bounds on the underlying trait 
methods you want to call are complex.

DER I V E T R A IT

While #[derive(Trait)] is extremely convenient, in the context of trait bounds, 
you should be aware of one subtlety around how it is often implemented . Many 
#[derive(Trait)] expansions desugar into impl Trait for Foo<T> where 
T: Trait . This is often what you want, but not always . For example, consider 
what happens if we try to derive Clone this way for Foo<T> and Foo contains an 
Arc<T> . Arc implements Clone regardless of whether T implements Clone, but 
due to the derived bounds, Foo will implement Clone only if T does! This isn’t 
usually too big of an issue, but it does add a bound where one isn’t needed . 
If we rename the type to Shared, the problem may become a little clearer . 
Imagine how confused a user that has a Shared<NotClone> will be when the 
compiler tells them that they cannot clone it! At the time of writing, this is how 
#[derive(Clone)] as provided by the standard library works, though this may 
change in the future .

Sometimes, you want bounds on associated types of types you’re 
generic over. As an example, consider the iterator method flatten, which 
takes an iterator that produces items that in turn implement Iterator and 
produces an iterator of the items of those inner iterators. The type it pro-
duces, Flatten, is generic over I, which is the type of the outer iterator. 
Flatten implements Iterator if I implements Iterator and the items yielded 
by I themselves implement IntoIterator. To enable you to write bounds 
like this, Rust lets you refer to associated types of a type using the syntax 
Type::AssocType. For example, we can refer to I’s Item type using I::Item. If 
a type has multiple associated types by the same name, such as if the trait 
that provides the associated type is itself generic (and therefore there are 
many implementations), you can disambiguate with the syntax <Type as 
Trait>::AssocType. Using this, you can write bounds not only for the outer 
iterator type but also for the item type of that outer iterator.

In code that uses generics extensively, you may find that you need to 
write a bound that talks about references to a type. This is normally fine, as 
you’ll tend to also have a generic lifetime parameter that you can use as the 
lifetime for these references. In some cases, however, you want the bound 
to say “this reference implements this trait for any lifetime.” This type of 
bound is known as a higher-ranked trait bound, and it’s particularly useful in 
association with the Fn traits. For example, say you want to be generic over 
a function that takes a reference to a T and returns a reference to inside that 
T. If you write F: Fn(&T) -> &U, you need to provide a lifetime for those refer-
ences, but you really want to say “any lifetime as long as the output is the 
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same as the input.” Using a higher-ranked lifetime, you can write F: for<'a> 
Fn(&'a T) -> &'a U to say that for any lifetime 'a, the bound must hold. The 
Rust compiler is smart enough that it automatically adds the for when you 
write Fn bounds with references like this, which covers the majority of use 
cases for this feature. The explicit form is needed so exceedingly rarely that, 
at the time of writing, the standard library uses it in just three places—but 
it does happen and so is worth knowing about.

To bring all of this together, consider the code in Listing 2-6, which can 
be used to implement Debug for any type that can be iterated over and whose 
elements are Debug.

impl Debug for AnyIterable
  where for<'a> &'a Self: IntoIterator,
        for<'a> <&'a Self as IntoIterator>::Item: Debug {
    fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
        f.debug_list().entries(self).finish()
}}

Listing 2-6: An excessively generic implementation of Debug for any iterable collection

You could copy-paste this implementation for pretty much any collec-
tion type and it would “ just work.” Of course, you may want a smarter debug 
implementation, but this illustrates the power of trait bounds quite well.

Marker Traits
Usually, we use traits to denote functionality that multiple types can sup-
port; a Hash type can be hashed by calling hash, a Clone type can be cloned 
by calling clone, and a Debug type can be formatted for debugging by calling 
fmt. But not all traits are functional in this way. Some traits, called marker 
traits, instead indicate a property of the implementing type. Marker traits 
have no methods or associated types and serve just to tell you that a par-
ticular type can or cannot be used in a certain way. For example, if a type 
implements the Send marker trait, it is safe to send across thread boundar-
ies. If it does not implement this marker trait, it isn’t safe to send. There are 
no methods associated with this behavior; it’s just a fact about the type. The 
standard library has a number of these in the std::marker module, including 
Send, Sync, Copy, Sized, and Unpin. Most of these (all except Copy) are also auto-
traits; the compiler automatically implements them for types unless the type 
contains something that does not implement the marker trait.

Marker traits serve an important purpose in Rust: they allow you to 
write bounds that capture semantic requirements not directly expressed 
in the code. There is no call to send in code that requires that a type is 
Send. Instead, the code assumes that the given type is fine to use in a sepa-
rate thread, and without marker traits the compiler would have no way of 
checking that assumption. It would be up to the programmer to remember 
the assumption and read the code very carefully, which we all know is not 
something we’d like to rely on. That path is riddled with data races, seg-
faults, and other runtime issues.
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Similar to marker traits are marker types. These are unit types (like 
struct MyMarker;) that hold no data and have no methods. Marker types 
are useful for, well, marking a type as being in a particular state. They 
come in handy when you want to make it impossible for a user to misuse 
an API. For example, consider a type like SshConnection, which may or may 
not have been authenticated yet. You could add a generic type argument 
to SshConnection and then create two marker types: Unauthenticated and 
Authenticated. When the user first connects, they get SshConnection<Unauthe
nticated>. In its impl block, you provide only a single method: connect. The 
 connect method returns a SshConnection<Authenticated>, and it’s only in that 
impl block that you provide the remaining methods for running commands 
and such. We will look at this pattern further in Chapter 3.

Existential Types
In Rust you very rarely have to specify the types of variables you declare in 
the body of a function or the types of generic arguments to methods that 
you call. This is because of type inference, where the compiler decides what 
type to use based on what type the code the type appears in evaluates to. 
The compiler will usually infer types only for variables and for the argu-
ments (and return types) of closures; top-level definitions like functions, 
types, traits, and trait implementation blocks all require that you explicitly 
name all types. There are a couple of reasons for this, but the primary one 
is that type inference is much easier when you have at least some known 
points to start the inference from. However, it’s not always easy, or even pos-
sible, to fully name a type! For example, if you return a closure from a func-
tion, or an async block from a trait method, its type does not have a name 
that you can type into your code.

To handle situations like this, Rust supports existential types. Chances 
are, you have already seen existential types in action. All functions marked 
as async fn or with a return type of impl Trait have an existential return 
type: the signature does not give the true type of the return value, just a 
hint that the function returns some type that implements some set of traits 
that the caller can rely on. And crucially, the caller can only rely on the 
return type implementing those traits, and nothing else. 

N O T E  Technically, it isn’t strictly true that the caller relies on the return type and nothing 
else. The compiler will also propagate auto-traits like Send and Sync through impl 
Trait in return position. We’ll look at this more in the next chapter.

This behavior is what gives existential types their name: we are assert-
ing that there exists some concrete type that matches the signature, and we 
leave it up to the compiler to find what that type is. The compiler will usu-
ally then go figure that out by applying type inference on the body of the 
function.
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Not all instances of impl Trait use existential types. If you use impl 
Trait in argument position for a function, it’s really just shorthand for an 
unnamed generic parameter to that function. For example, fn foo(s: impl 
ToString) is mostly just syntax sugar for fn foo<S: ToString>(s: S).

Existential types come in handy particularly when you implement traits 
that have associated types. For example, imagine you’re implementing the 
IntoIterator trait. It has an associated type IntoIter that holds the type of 
the iterator that the type in question can be turned into. With existential 
types, you do not need to define a separate iterator type to use for IntoIter. 
Instead, you can give the associated type as impl Iterator<Item = Self::Item> 
and just write an expression inside the fn into_iter(self) that evaluates to an 
Iterator, such as by using maps and filters over some existing iterator type.

Existential types also provide a feature beyond mere convenience: they 
allow you to perform zero-cost type erasure. Instead of exporting helper 
types just because they appear in a public signature somewhere—iterators 
and futures are common examples of this—you can use existential types to 
hide the underlying concrete type. Users of your interface are shown only 
the traits that the relevant type implements, while the concrete type is left 
as an implementation detail. Not only does this simplify the interface, but it 
also enables you to change that implementation as you wish without break-
ing downstream code in the future.

Summary
This chapter has provided a thorough review of the Rust type system. We’ve 
looked both at how the compiler manifests types in memory and how it rea-
sons about the types themselves. This is important background material for 
writing unsafe code, complex application interfaces, and asynchronous code 
in later chapters. You’ll also find that much of the type reasoning from this 
chapter plays into how you design Rust code interfaces, which we’ll cover in 
the next chapter.
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D E S I G N I N G  I N T E R F A C E S

Every project, no matter how large or small, 
has an API. In fact, it usually has several. 

Some of these are user-facing, like an HTTP 
endpoint or a command line interface, and 

some are developer-facing, like a library’s public inter-
face. On top of these, Rust crates also have a number 
of internal interfaces: every type, trait, and module  
boundary has its own miniature API that the rest of your code interfaces 
with. As your codebase grows in size and complexity, you’ll find it worth-
while to invest some thought and care into how you design even the inter-
nal APIs to make the experience of using and maintaining the code over 
time as pleasant as possible. 

In this chapter we’ll look at some of the most important considerations 
for writing idiomatic interfaces in Rust, whether the users of those inter-
faces are your own code or other developers using your library. These essen-
tially boil down to four principles: your interfaces should be unsurprising, 
flexible, obvious, and constrained. I’ll discuss each of these principles in turn, 
to provide some guidance for writing reliable and usable interfaces.
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I highly recommend taking a look at the Rust API Guidelines (https://
rust-lang.github.io/api-guidelines/) after you’ve read this chapter. There’s 
an excellent checklist you can follow, with a detailed run-through of each 
recommendation. Many of the recommendations in this chapter are also 
checked by the cargo clippy tool, which you should start running on your 
code if you aren’t already. I also encourage you to read through Rust RFC 
1105 (https://rust-lang.github.io/rfcs/1105-api-evolution.html) and the chapter 
of The Cargo Book on SemVer compatibility (https://doc.rust-lang.org/cargo/ 
reference/semver.html), which cover what is and is not a breaking change 
in Rust.

Unsurprising
The Principle of Least Surprise, otherwise known as the Law of Least 
Astonishment, comes up a lot in software engineering, and it holds true for 
Rust interfaces as well. Where possible, your interfaces should be intuitive 
enough that if the user has to guess, they usually guess correctly. Of course, 
not everything about your application is going to be immediately intuitive 
in this way, but anything that can be unsurprising should be. The core idea 
here is to stick close to things the user is likely to already know so that they 
don’t have to relearn concepts in a different way than they’re used to. That 
way you can save their brain power for figuring out the things that are actu-
ally specific to your interface.

There are a variety of ways you can make your interfaces predictable. 
Here, we’ll look at how you can use naming, common traits, and ergonomic 
trait tricks to help the user out.

Naming Practices
A user of your interface will encounter it first through its names; they will 
immediately start to infer things from the names of types, methods, vari-
ables, fields, and libraries they come across. If your interface reuses names 
for things—say, methods and types—from other (perhaps common) inter-
faces, the user will know they can make certain assumptions about your 
methods and types. A method called iter probably takes &self, and prob-
ably gives you an iterator. A method called into_inner probably takes self 
and likely returns some kind of wrapped type. A type called SomethingError 
probably implements std::error::Error and appears in various Results. By 
reusing common names for the same purpose, you make it easier for the 
user to guess what things do and allow them to more easily understand 
the things that are different about your interface.

A corollary to this is that things that share a name should in fact work 
the same way. Otherwise—for example, if your iter method takes self, or if 
your SomethingError type does not implement Error—the user will likely write 
incorrect code based on how they expect the interface to work. They will be 
surprised and frustrated and will have to spend time digging into how your 
interface differs from their expectations. When we can save the user this 
kind of friction, we should.

https://rust-lang.github.io/api-guidelines/
https://rust-lang.github.io/api-guidelines/
https://rust-lang.github.io/rfcs/1105-api-evolution.html
https://doc.rust-lang.org/cargo/reference/semver.html
https://doc.rust-lang.org/cargo/reference/semver.html
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Common Traits for Types
Users in Rust will also make the major assumption that everything in the 
interface “ just works.” They expect to be able to print any type with {:?} 
and send anything and everything to another thread, and they expect that 
every type is Clone. Where possible, we should again avoid surprising the 
user and eagerly implement most of the standard traits even if we do not 
need them immediately.

Because of the coherence rules discussed in Chapter 2, the compiler will 
not allow users to implement these traits when they need them. Users aren’t 
allowed to implement a foreign trait (like Clone) for a foreign type like one 
from your interface. They would instead need to wrap your interface type in 
their own type, and even then it may be quite difficult to write a reasonable 
implementation without access to the type’s internals.

First among these standard traits is the Debug trait. Nearly every type can, 
and should, implement Debug, even if it only prints the type’s name. Using 
#[derive(Debug)] is often the best way to implement the Debug trait in your 
interface, but keep in mind that all derived traits automatically add the same 
bound for any generic parameters. You could also simply write your own 
implementation by leveraging the various debug_ helpers on fmt::Formatter.

Tied in close second are the Rust auto-traits Send and Sync (and, to a 
lesser extent, Unpin). If a type does not implement one of these traits, it 
should be for a very good reason. A type that is not Send can’t be placed in 
a Mutex and can’t be used even transitively in an application that contains a 
thread pool. A type that is not Sync can’t be shared through an Arc or placed 
in a static variable. Users have come to expect that types just work in these 
contexts, especially in the asynchronous world where nearly everything 
runs on a thread pool, and will become frustrated if you don’t ensure that 
your types implement these traits. If your types cannot implement them, 
make sure that fact, and the reason why, is well documented!

The next set of nearly universal traits you should implement is Clone and 
Default. These traits can be derived or implemented easily and make sense 
to implement for most types. If your type cannot implement these traits, 
make sure to call it out in your documentation, as users will usually expect 
to be able to easily create more (and new) instances of types as they see fit. 
If they cannot, they will be surprised.

One step further down in the hierarchy of expected traits is the com-
parison traits: PartialEq, PartialOrd, Hash, Eq, and Ord. The PartialEq trait is 
particularly desirable, because users will at some point inevitably have two 
instances of your type that they wish to compare with == or assert_eq!. Even 
if your type would compare equal for only the same instance of the type, it’s 
worth implementing PartialEq to enable your users to use assert_eq!.

PartialOrd and Hash are more specialized, and may not apply quite as 
broadly, but where possible you will want to implement them too. This is 
especially true for types a user might use as the key in a map, or a type they 
may deduplicate using any of the std::collection set types, since they tend 
to require these bounds. Eq and Ord come with additional semantic require-
ments on the implementing type’s comparison operations beyond those of 
PartialEq and PartialOrd. These are well documented in the documentation 
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for those traits, and you should implement them only if you’re sure those 
semantics actually apply to your type.

Finally, for most types, it makes sense to implement the serde crate’s 
Serialize and Deserialize traits. These can be easily derived, and the serde 
_derive crate even comes with mechanisms for overwriting the serialization 
for just one field or enum variant. Since serde is a third-party crate, you 
may not wish to add a required dependency on it. Most libraries therefore 
choose to provide a serde feature that adds support for serde only when the 
user opts into it.

You might be wondering why I haven’t included the derivable trait Copy 
in this section. There are two things that set Copy apart from the other traits 
mentioned. The first is that users do not generally expect types to be Copy; 
quite to the contrary, they tend to expect that if they want two copies of 
something, they have to call clone. Copy changes the semantics of moving a 
value of the given type, which might surprise the user. This ties in to the 
second observation: it is very easy for a type to stop being Copy, because Copy 
types are highly restricted. A type that starts out simple can easily end up 
having to hold a String, or some other non-Copy type. Should that happen, 
and you have to remove the Copy implementation, that’s a backward incom-
patible change. In contrast, you rarely have to remove a Clone implementa-
tion, so that’s a less onerous commitment.

Ergonomic Trait Implementations
Rust does not automatically implement traits for references to types that 
implement traits. To phrase this a different way, you cannot generally call 
fn foo<T: Trait>(t: T) with a &Bar, even if Bar: Trait. This is because Trait 
may contain methods that take &mut self or self, which obviously cannot be 
called on &Bar. Nonetheless, this behavior might be very surprising to a user 
who sees that Trait has only &self methods!

For this reason, when you define a new trait, you’ll usually want to pro-
vide blanket implementations as appropriate for that trait for &T where T: 
Trait, &mut T where T: Trait, and Box<T> where T: Trait. You may be able to 
implement only some of these depending on what receivers the methods of 
Trait have. Many of the traits in the standard library have similar implemen-
tations, precisely because that leads to fewer surprises for the user.

Iterators are another case where you’ll often want to specifically add 
trait implementations on references to a type. For any type that can be 
iterated over, consider implementing IntoIterator for both &MyType and &mut 
MyType where applicable. This makes for loops work with borrowed instances 
of your type as well out of the box, just like users would expect.

Wrapper Types
Rust does not have object inheritance in the classical sense. However, the Deref 
trait and its cousin AsRef both provide something a little like inheritance. 
These traits allow you to have a value of type T and call methods on some 
type U by calling them directly on the T-typed value if T: Deref<Target = U>. 
This feels like magic to the user, and is generally great.
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If you provide a relatively transparent wrapper type (like Arc), there’s a 
good chance you’ll want to implement Deref so that users can call methods 
on the inner type by just using the . operator. If accessing the inner type 
does not require any complex or potentially slow logic, you should also 
consider implementing AsRef, which allows users to easily use a &WrapperType 
as an &InnerType. For most wrapper types, you will also want to implement 
From<InnerType> and Into<InnerType> where possible so that your users can 
easily add or remove your wrapping.

You may also have come across the Borrow trait, which feels very similar 
to Deref and AsRef but is really a bit of a different beast. Specifically, Borrow 
is tailored for a much narrower use case: allowing the caller to supply any 
one of multiple essentially identical variants of the same type. It could, per-
haps, have been called Equivalent instead. For example, for a HashSet<String>, 
Borrow allows the caller to supply either a &str or a &String. While the same 
could have been achieved with AsRef, that would not be safe without Borrow’s 
additional requirement that the target type implements Hash, Eq, and Ord 
exactly the same as the implementing type. Borrow also has a blanket imple-
mentation of Borrow<T> for T, &T, and &mut T, which makes it convenient to use 
in trait bounds to accept either owned or referenced values of a given type. 
In general, Borrow is intended only for when your type is essentially equiva-
lent to another type, whereas Deref and AsRef are intended to be imple-
mented more widely for anything your type can “act as.”

DER EF A ND INHER EN T ME T HODS

The magic around the dot operator and Deref can get confusing and surprising 
when there are methods on T that take self . For example, given a value t: T, 
it is not clear whether t.frobnicate() frobnicates the T or the underlying U! 

For this reason, types that allow you to transparently call methods on 
some inner type that isn’t known in advance should avoid inherent methods . 
It’s fine for Vec to have a push method even though it dereferences to a slice, 
since you know that slices won’t get a push method any time soon . But if 
your type dereferences to a user-controlled type, any inherent method you 
add may also exist on that user-controlled type, and thus cause issues . In 
these cases, favor static methods of the form fn frobnicate(t: T) . That way, 
t.frobnicate() always calls U::frobnicate, and T::frobnicate(t) can be 
used to frobnicate the T itself . 

Flexible
Every piece of code you write includes, implicitly or explicitly, a contract. 
The contract consists of a set of requirements and a set of promises. The 
requirements are restrictions on how the code can be used, while the 
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promises are guarantees about how the code can be used. When designing 
a new interface, you want to think carefully about this contract. A good rule 
of thumb is to avoid imposing unnecessary restrictions and to only make 
promises you can keep. Adding restrictions or removing promises usually 
requires a major semantic version change and is likely to break code else-
where. Relaxing restrictions or giving additional promises, on the other 
hand, is usually backward compatible.

In Rust, restrictions usually come in the form of trait bounds and 
argument types, and promises come in the form of trait implementations 
and return types. For example, compare the three function signatures in 
Listing 3-1.

fn frobnicate1(s: String) -> String
fn frobnicate2(s: &str) -> Cow<'_, str>
fn frobnicate3(s: impl AsRef<str>) -> impl AsRef<str>

Listing 3-1: Similar function signatures with different contracts

These three function signatures all take a string and return a string, 
but they do so under very different contracts.

The first function requires the caller to own the string in the form of 
the String type, and it promises that it will return an owned String. Since 
the contract requires the caller to allocate and requires us to return an 
owned String, we cannot later make this function allocation-free in a back-
ward compatible way.

The second function relaxes the contract: the caller can provide any 
reference to a string, so the user no longer needs to allocate or give up own-
ership of a String. It also promises to give back a std::borrow::Cow, meaning 
it can return either a string reference or an owned String, depending on 
whether it needs to own the string. The promise here is that the function 
will always return a Cow, which means that we cannot, say, change it to use 
some other optimized string representation later. The caller must also spe-
cifically provide a &str, so if they have, say, a pre-existing String of their own, 
they must dereference it to a &str to call our function.

The third function lifts these restrictions. It requires only that the user 
pass in a type that can produce a reference to a string, and it promises only 
that the return value can produce a reference to a string.

None of these function signatures is better than the others. If you need 
ownership of a string in the function, you can use the first argument type 
to avoid an extra string copy. If you want to allow the caller to take advan-
tage of the case where an owned string was allocated and returned, the sec-
ond function with a return type of Cow may be a good choice. Instead, what 
I want you to take away from this is that you should think carefully about 
what contract your interface binds you to, because changing it after the fact 
can be disruptive.

In the remainder of this section I give examples of interface design 
decisions that often come up, and their implications for your interface 
contract.
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Generic Arguments
One obvious requirement your interface must place on users is what types 
they must provide to your code. If your function explicitly takes a Foo, the 
user must own and give you a Foo. There is no way around it. In most cases 
it pays off to use generics rather than concrete types, to allow the caller to 
pass any type that conforms to what your function actually needs, rather 
than only a particular type. Changing &str in Listing 3-1 to impl AsRef<str> 
is an example of this kind of relaxing. One way to go about relaxing 
requirements this way is to start with the argument fully generic with no 
bounds, and then just follow the compiler errors to discover what bounds 
you need to add.

However, if taken to the extreme, this approach would make every argu-
ment to every function its own generic type, which would be both hard to 
read and hard to understand. There are no hard-and-fast rules for exactly 
when you should or should not make a given parameter generic, so use your 
best judgment. A good rule of thumb is to make an argument generic if you 
can think of other types a user might reasonably and frequently want to use 
instead of the concrete type you started with.

You may remember from Chapter 2 that generic code is duplicated for 
every combination of types ever used with the generic code through mono-
morphization. With that in mind, the idea of making lots of arguments 
generic might make you worried about overly enlarging your binaries. In 
Chapter 2 we also discussed how you can use dynamic dispatch to mitigate 
this at a (usually) negligible performance cost, and that applies here too. 
For arguments that you take by reference anyway (recall that dyn Trait is not 
Sized, and that you need a wide pointer to use them), you can easily replace 
your generic argument with one that uses dynamic dispatch. For instance, 
instead of impl AsRef<str>, you could take &dyn AsRef<str>.

Before you go running to do that, though, there are a few things you 
should consider. First, you are making this choice on behalf of your users, 
who cannot opt out of dynamic dispatch. If you know that the code you’re 
applying dynamic dispatch to will never be performance-sensitive, that 
may be fine. But if a user comes along who wants to use your library in 
their high-performance application, dynamic dispatch in a function that is 
called in a hot loop may be a deal breaker. Second, at the time of writing, 
using dynamic dispatch will work only when you have a simple trait bound 
like T: AsRef<str> or impl AsRef<str>. For more complex bounds, Rust does 
not know how to construct a dynamic dispatch vtable, so you cannot take, 
say, &dyn Hash + Eq. And finally, remember that with generics, the caller can 
always choose dynamic dispatch themselves by passing in a trait object. 
The reverse is not true: if you take a trait object, that is what the caller must 
provide.

It may be tempting to start your interfaces off with concrete types and 
then turn them generic over time. This can work, but keep in mind that 
such changes are not necessarily backward compatible. To see why, imagine 
that you change a function from fn foo(v: &Vec<usize>) to fn foo(v: impl 
AsRef<[usize]>). While every &Vec<usize> implements AsRef<[usize]>, type 
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inference can still cause issues for users. Consider what happens if the 
caller invokes foo with foo(&iter.collect()). In the original version, the com-
piler could determine that it should collect into a Vec, but now it just knows 
that it needs to collect into some type that implements AsRef<[usize]>. And 
there could be multiple such types, so with this change, the caller’s code 
will no longer compile!

Object Safety
When you define a new trait, whether or not that trait is object-safe (see the 
end of “Compilation and Dispatch” in Chapter 2) is an unwritten part of 
the trait’s contract. If the trait is object-safe, users can treat different types 
that implement your trait as a single common type using dyn Trait. If it isn’t, 
the compiler will disallow dyn Trait for that trait. You should prefer your 
traits to be object-safe even if that comes at a slight cost to the ergonom-
ics of using them (such as taking impl AsRef<str> over &str), since object 
safety enables new ways to use your traits. If your trait must have a generic 
method, consider whether its generic parameters can be on the trait itself 
or if its generic arguments can also use dynamic dispatch to preserve the 
object safety of the trait. Alternatively, you can add a where Self: Sized trait 
bound to that method, which makes it possible to call the method only with 
a concrete instance of the trait (and not through dyn Trait). You can see 
examples of this pattern in the Iterator and Read traits, which are object-safe 
but provide some additional convenience methods on concrete instances.

There is no single answer to the question of how many sacrifices you 
should be willing to make to preserve object safety. My recommendation is 
that you consider how your trait will be used, and whether it makes sense 
for users to want to use it as a trait object. If you think it’s likely that users 
will want to use many different instances of your trait together, you should 
work harder to provide object safety than if you don’t think that use case 
makes much sense. For example, dynamic dispatch would not be useful 
for the FromIterator trait because its one method does not take self, so 
you wouldn’t be able to construct a trait object in the first place. Similarly, 
std::io::Seek is fairly useless as a trait object on its own, because the only 
thing you would be able to do with such a trait object is seek, without being 
able to read or write.

DROP T R A IT OBJEC T S

You might think that the Drop trait is also useless as a trait object, since all 
you can do with Drop as a trait object is to drop it . But it turns out there are 
some libraries that specifically just want to be able to drop arbitrary types . For 
example, a library that offers deferred dropping of values, such as for concur-
rent garbage collection or just deferred cleanup, cares only that the values can 
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be dropped, and nothing else . Interestingly enough, the story of Drop 
doesn’t end there; since Rust needs to be able to drop trait objects 
too, every vtable contains the drop method . Effectively, every dyn 
Trait is also a dyn Drop .

Remember that object safety is a part of your public interface! 
If you modify a trait in an otherwise backward compatible way, such 
as by adding a method with a default implementation, but it makes 
the trait not object-safe, you need to bump your major semantic ver-
sion number.

Borrowed vs. Owned
For nearly every function, trait, and type you define in Rust, you 
must decide whether it should own, or just hold a reference to, its 
data. Whatever decision you make will have far-reaching impli-
cations for the ergonomics and performance of your interface. 
Luckily, these decisions very often make themselves.

If the code you write needs ownership of the data, such as to 
call methods that take self or to move the data to another thread, 
it must store the owned data. When your code must own data, it 
should generally also make the caller provide owned data, rather 
than taking values by reference and cloning them. This leaves the 
caller in control of allocation, and it is upfront about the cost of 
using the interface in question.

On the other hand, if your code doesn’t need to own the data, 
it should operate on references instead. One common exception 
to this rule is with small types like i32, bool, or f64, which are just 
as cheap to store and copy directly as to store through references. 
Be wary of assuming this holds true for all Copy types, though; 
[u8; 8192] is Copy, but it would be expensive to store and copy it 
all over the place.

Of course, in the real world, things are often less clear-cut. 
Sometimes, you don’t know in advance whether your code will need 
to own the data or not. For example, String::from_utf8_lossy needs 
to take ownership of the byte sequence that is passed to it only if it 
contains invalid UTF-8 sequences. In this case, the Cow type is your 
friend: it lets you operate on references if the data allows, and it lets 
you produce an owned value if necessary.

Other times, reference lifetimes complicate the interface so 
much that it becomes a pain to use. If your users are struggling to 
get code to compile on top of your interface, that’s a sign that you 
may want to (even unnecessarily) take ownership of certain pieces 
of data. If you do this, start with data that is cheap to clone or is not 
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part of anything performance-sensitive before you decide to heap-allocate 
what might be a huge chunk of bytes.

Fallible and Blocking Destructors
Types centered on I/O often need to perform cleanup when they’re dropped.  
This may include flushing writes to disk, closing files, or gracefully terminat-
ing connections to remote hosts. The natural place to perform this cleanup 
is in the type’s Drop implementation. Unfortunately, once a value is dropped, 
we no longer have a way to communicate errors to the user except by panick-
ing. A similar problem arises in asynchronous code, where we wish to finish 
up when there is work pending. By the time drop is called, the executor may 
be shutting down, and we have no way to do more work. We could try to 
start another executor, but that comes with its own host of problems, such as 
blocking in asynchronous code, as we will see in Chapter 8.

There is no perfect solution to these problems, and no matter what we 
do, some applications will inevitably fall back to our Drop implementation. 
For that reason, we need to provide best-effort cleanup through Drop. If 
cleanup errors, at least we tried—we swallow the error and move on. If an 
executor is still available, we might spawn a future to do cleanup, but if it 
never gets to run, we did what we could.

However, we ought to provide a better alternative for users who wish 
to leave no loose threads. We can do this by providing an explicit destruc-
tor. This usually takes the form of a method that takes ownership of self 
and exposes any errors (using -> Result<_, _>) or asynchrony (using async 
fn) that are inherent to the destruction. A careful user can then use that 
method to gracefully tear down any associated resources.

N O T E  Make sure you highlight the explicit destructor in your documentation!

As always, there’s a trade-off. The moment you add an explicit destruc-
tor, you will run into two issues. First, since your type implements Drop, you 
can no longer move out of any of that type’s fields in the destructor. This 
is because Drop::drop will still be called after your explicit destructor runs, 
and it takes &mut self, which requires that no part of self has been moved. 
Second, drop takes &mut self, not self, so your Drop implementation cannot 
simply call your explicit destructor and ignore its result (because it doesn’t 
own self). There are a couple of ways around these problems, none of 
which are perfect.

The first is to make your top-level type a newtype wrapper around 
an Option, which in turn holds some inner type that holds all of the type’s 
fields. You can then use Option::take in both destructors, and call the inner 
type’s explicit destructor only if the inner type has not already been taken. 
Since the inner type does not implement Drop, you can take ownership of all 
the fields there. The downside of this approach is that all the methods you 
wish to provide on the top-level type must now include code to get through 
the Option (which you know is always Some since drop has not yet been called) 
to the fields on the inner type.
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The second workaround is to make each of your fields takeable. You can 
“take” an Option by replacing it with None (which is what Option::take does), 
but you can do this with many other types as well. For example, you can 
take a Vec or HashMap by simply replacing them with their cheap-to-construct 
default values—std::mem::take is your friend here. This approach works 
great if your types have sane “empty” values but gets tedious if you must 
wrap nearly every field in an Option and then modify every access of those 
fields with a matching unwrap.

The third option is to hold the data inside the ManuallyDrop type, which 
dereferences to the inner type, so there’s no need for unwraps. You can also 
use ManuallyDrop::take in drop to take ownership at destruction time. The pri-
mary downside of this approach is that ManuallyDrop::take is unsafe. There 
are no safety mechanisms in place to ensure that you don’t try to use the 
value inside the ManuallyDrop after you’ve called take or that you don’t call 
take multiple times. If you do, your program will silently exhibit undefined 
behavior, and bad things will happen.

Ultimately, you should choose whichever of these approaches fits your 
application best. I would err on the side of going with the second option, 
and switching to the others only if you find yourself in a sea of Options. The 
ManuallyDrop solution is excellent if the code is simple enough that you can eas-
ily check the safety of your code, and you are confident in your ability to do so.

Obvious
While some users may be familiar with aspects of the implementation that 
underpins your interface, they are unlikely to understand all of its rules 
and limitations. They won’t know that it’s never okay to call foo after calling 
bar, or that it’s only safe to call the unsafe method baz when the moon is at a 
47-degree angle and no one has sneezed in the past 18 seconds. Only if the 
interface makes it clear that something strange is going on will they reach 
for the documentation or carefully read type signatures. It’s therefore criti-
cal for you to make it as easy as possible for users to understand your inter-
face and as hard as possible for them to use it incorrectly. The two primary 
techniques at your disposal for this are your documentation and the type 
system, so let’s look at each of those in turn.

N O T E  You can also take advantage of naming to suggest to the user when there’s more to 
an interface than meets the eye. If a user sees a method named dangerous, chances are 
they will read its documentation.

Documentation
The first step to making your interfaces transparent is to write good docu-
mentation. I could write an entire book dedicated to how to write documen-
tation, but let’s focus on Rust-specific advice here.

First, clearly document any cases where your code may do something 
unexpected, or where it relies on the user doing something beyond what’s 
dictated by the type signature. Panics are a good example of both of 
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these circumstances: if your code can panic, document that fact, along 
with the circumstances it might panic under. Similarly, if your code might 
return an error, document the cases in which it does. For unsafe functions, 
document what the caller must guarantee in order for the call to be safe.

Second, include end-to-end usage examples for your code on a crate 
and module level. These are more important than examples for specific 
types or methods, since they give the user a feel for how everything fits 
together. With a decent high-level understanding of the interface’s struc-
ture, the developer may soon realize what particular methods and types 
do and where they should be used. End-to-end examples also give the user 
a starting point for customizing their usage, and they can, and often will, 
copy-paste the example and then modify it to suit their needs. This kind 
of “learning by doing” tends to work better than having them try to piece 
something together from the components.

N O T E  Very method-specific examples that show that, yes, the len method indeed returns the 
length are unlikely to tell the user anything new about your code.

Third, organize your documentation. Having all your types, traits, and 
functions in a single top-level module makes it difficult for the user to get 
a sense of where to start. Take advantage of modules to group together 
semantically related items. Then, use intra-documentation links to interlink 
items. If the documentation on type A talks about trait B, then it should 
link to that trait right there. If you make it easy for the user to explore your 
interface, they are less likely to miss important connections or dependen-
cies. Also consider marking parts of your interface that are not intended to 
be public but are needed for legacy reasons with #[doc(hidden)], so that they 
do not clutter up your documentation.

And finally, enrich your documentation wherever possible. Link to 
external resources that explain concepts, data structures, algorithms, or 
other aspects of your interface that may have good explanations elsewhere. 
RFCs, blog posts, and whitepapers are great for this, if any are relevant. Use 
#[doc(cfg(..))] to highlight items that are available only under certain con-
figurations so the user quickly realizes why some method that’s listed in the 
documentation isn’t available. Use #[doc(alias = "...")] to make types and 
methods discoverable under other names that users may search for them by. 
In the top-level documentation, point the user to commonly used modules, 
features, types, traits, and methods.

Type System Guidance
The type system is an excellent tool to ensure that your interfaces are obvi-
ous, self-documenting, and misuse-resistant. You have several techniques at 
your disposal that can make your interfaces very hard to misuse, and thus, 
make it more likely that they will be used correctly.

The first of these is semantic typing, in which you add types to repre-
sent the meaning of a value, not just its primitive type. The classic example 
here is for Booleans: if your function takes three bool arguments, chances 
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are some user will mess up the order of the values and realize it only after 
something has gone terribly wrong. If, on the other hand, it takes three 
arguments of distinct two-variant enum types, the user cannot get the 
order wrong without the compiler yelling at them: if they attempt to pass 
DryRun::Yes to the overwrite argument, that will simply not work, nor will 
passing Overwrite::No as the dry_run argument.  You can apply semantic typ-
ing beyond Booleans as well. For example, a newtype around a numeric 
type may provide a unit for the contained value, or it could constrain 
raw pointer arguments to only those that have been returned by another 
method.

A closely related technique is to use zero-sized types to indicate that a 
particular fact is true about an instance of a type. Consider, for instance, a 
type called Rocket that represents the state of a real rocket. Some operations 
(methods) on Rocket should be available no matter what state the rocket 
is in, but some make sense only in particular situations. It is, for example, 
impossible to launch a rocket if it has already been launched. Similarly, it 
should probably not be possible to separate the fuel tank if the rocket has 
not yet launched. We could model these as enum variants, but then all the 
methods would be available at every stage, and we’d need to introduce pos-
sible panics.

Instead, as shown in Listing 3-2, we can introduce a generic parameter 
on Rocket, Stage, and use it to restrict what methods are available when.

1 struct Grounded;
struct Launched;
// and so on
struct Rocket<Stage = Grounded> {
2 stage: std::marker::PhantomData<Stage>,
}

3 impl Default for Rocket<Grounded> {}
impl Rocket<Grounded> {
  pub fn launch(self) -> Rocket<Launched> { }
}
4 impl Rocket<Launched> {
  pub fn accelerate(&mut self) { }
  pub fn decelerate(&mut self) { }
}

5 impl<Stage> Rocket<Stage> {
  pub fn color(&self) -> Color { }
  pub fn weight(&self) -> Kilograms { }
}

Listing 3-2: Using marker types to restrict implementations

We introduce unit types to represent each stage of the rocket 1. We don’t 
actually need to store the stage—only the meta-information it  provides—
so we store it behind a PhantomData 2 to guarantee that it is eliminated at 
compile time. Then, we write implementation blocks for Rocket only when 
it holds a particular type parameter. You can construct a rocket only on the 
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ground (for now), and you can launch it only from the ground 3.  
Only when the rocket has been launched can you control its velocity 4. 
There are some things you can always do with the rocket, no matter what 
state it is in, and those we place in a generic implementation block 5. You’ll 
notice that with the interface designed this way, it’s simply not possible for 
the user to call a method at the wrong time—we have encoded the usage 
rules in the types themselves, and made illegal states unrepresentable.

This notion extends to many other domains as well; if your function 
ignores a pointer argument unless a given Boolean argument is true, it’s 
better to combine the two arguments instead. With an enum type with 
one variant for false (and no pointer) and one variant for true that holds a 
pointer, neither the caller nor the implementer can misunderstand the rela-
tionship between the two. This is a powerful idea that I highly encourage 
you to make use of.

Another small but useful tool in making interfaces obvious is the #[must 
_use] annotation. Add it to any type, trait, or function, and the compiler will 
issue a warning if the user’s code receives an element of that type or trait, or 
calls that function, and does not explicitly handle it. You may already have 
seen this in the context of Result: if a function returns a Result and you do 
not assign its return value somewhere, you get a compiler warning. Be care-
ful not to overuse this annotation, though—add it only if the user is very 
likely to make a mistake if they are not using the return value.

Constrained
Over time, some user will depend on every property of your interface, 
whether bug or feature. This is especially true for publicly available librar-
ies where you have no control over your users. As a result, you should think 
carefully before you make user-visible changes. Whether you’re adding a 
new type, field, method, or trait implementation or changing an existing 
one, you want to make sure that the change will not break existing users’ 
code, and that you are planning to keep that change around for a while. 
Frequent backward incompatible changes (major version increases in 
semantic versioning) are sure to draw the ire of your users.

Many backward incompatible changes are obvious, like renaming a 
public type or removing a public method, but some are subtler and tie 
in deeply with the way Rust works. Here, we’ll cover some of the thornier 
subtle changes and how to plan for them. You’ll see that you need to bal-
ance some of these against how flexible you want your interface to be— 
sometimes, something’s got to give.

Type Modifications
Removing or renaming a public type will almost certainly break some user’s 
code. To counter this, you’ll want to take advantage of Rust’s visibility modi-
fiers, like pub(crate) and pub(in path), whenever possible. The fewer public 
types you have, the more freedom you have to change things later without 
breaking existing code.
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User code can depend on your types in more ways than just by name, 
though. Consider the public type in Listing 3-3 and the given use of 
that code.

// in your interface
pub struct Unit;
// in user code
let u = lib::Unit;

Listing 3-3: An innocent-looking public type

Now consider what happens if you add a private field to Unit. Even 
though the field you add is private, the change will still break the user’s 
code, because the constructor they relied on has disappeared. Similarly, 
consider the code and use in Listing 3-4.

// in your interface
pub struct Unit { pub field: bool };
// in user code
fn is_true(u: lib::Unit) -> bool {
    matches!(u, Unit { field: true })
}

Listing 3-4: User code accessing a single public field

Here, too, adding a private field to Unit will break user code, this 
time because Rust’s exhaustive pattern match checking logic is able to see 
parts of the interface that the user cannot see. It recognizes that there are 
more fields, even though the user code cannot access them, and rejects the 
user’s pattern as incomplete. A similar issue arises if we turn a tuple struct 
into a regular struct with named fields: even if the fields themselves are 
exactly the same, any old patterns will no longer be valid for the new type 
definition.

Rust provides the #[non_exhaustive] attribute to help mitigate these 
issues. You can add it to any type definition, and the compiler will disallow 
the use of implicit constructors (like lib::Unit { field1: true }) and non-
exhaustive pattern matches (that is, patterns without a trailing , ..) on 
that type. This is a great attribute to add if you suspect that you’re likely to 
modify a particular type in the future. It does constrain user code though, 
such as by taking away users’ ability to rely on exhaustive pattern matches, 
so avoid adding it if you think a given type is likely to remain stable.

Trait Implementations
As you’ll recall from Chapter 2, Rust’s coherence rules disallow multiple 
implementations of a given trait for a given type. Since we do not know 
what implementations downstream code may have added, adding a blanket 
implementation of an existing trait is generally a breaking change. The 
same holds true for implementing a foreign trait for an existing type, or 
an existing trait for a foreign type—in both cases, the owner of the foreign 
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trait or type may simultaneously add a conflicting implementation, so this 
must be a breaking change.

Removing a trait implementation is a breaking change, but implement-
ing traits for a new type is never a problem, since no crate can have imple-
mentations that conflict with that type.

Perhaps counterintuitively, you also want to be careful about imple-
menting any trait for an existing type. To see why, consider the code in 
Listing 3-5.

// crate1 1.0
pub struct Unit;
put trait Foo1 { fn foo(&self) }
// note that Foo1 is not implemented for Unit

// crate2; depends on crate1 1.0
use crate1::{Unit, Foo1};
trait Foo2 { fn foo(&self) }
impl Foo2 for Unit { .. }
fn main() {
  Unit.foo();
}

Listing 3-5: Implementing a trait for an existing type may cause problems.

If you add impl Foo1 for Unit to crate1 without marking it a breaking 
change, the downstream code will suddenly stop compiling since the call to 
foo is now ambiguous. This can even apply to implementations of new public 
traits, if the downstream crate uses wildcard imports (use crate1::*). You 
will particularly want to keep this in mind if you provide a prelude module 
that you instruct users to use wildcard imports for.

Most changes to existing traits are also breaking changes, such as 
changing a method signature or adding a new method. Changing a method 
signature breaks all implementations, and probably many uses, of the trait, 
whereas adding a new method “ just” breaks all implementations. Adding 
a new method with a default implementation is fine though, since existing 
implementations will continue to apply.

I say “generally” and “most” here, because as interface authors, we have a 
tool available to us that lets us skirt some of these rules: sealed traits. A sealed 
trait is one that can be used only, and not implemented, by other crates. 
This immediately makes a number of breaking changes non- breaking. For 
example, you can add a new method to a sealed trait, since you know there 
are no implementations outside of the current crate to consider. Similarly, 
you can implement a sealed trait for new foreign types, since you know 
the foreign crate that defined that type cannot have added a conflicting 
implementation.

Sealed traits are most commonly used for derived traits—traits that 
provide blanket implementations for types that implement particular other 
traits. You should seal a trait only if it does not make sense for a foreign 
crate to implement your trait; it severely restricts the usefulness of the 
trait, since downstream crates will no longer be able to implement it for 
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their own types. You can also use sealed traits to restrict which types can 
be used as type arguments, such as restricting the Stage type in the Rocket 
example from Listing 3-2 to only the Grounded and Launched types.

Listing 3-6 shows how to seal a trait and how to then still add implemen-
tations for it in the defining crate.

pub trait CanUseCannotImplement: sealed::Sealed 1 { .. }
mod sealed {
  pub trait Sealed {}
2 impl<T> Sealed for T where T: TraitBounds {}
}
impl<T> CanUseCannotImplement for T where T: TraitBounds {}

Listing 3-6: How to seal a trait and add implementations for it

The trick is to add a private, empty trait as a supertrait of the trait you 
wish to seal 1. Since the supertrait is in a private module, other crates can-
not reach it and thus cannot implement it. The sealed trait requires the 
underlying type to implement Sealed, so only the types that we explicitly 
allow 2 are able to ultimately implement the trait.

N O T E  If you do seal a trait this way, make sure you document that fact so that users do not 
get frustrated trying to implement the trait themselves!

Hidden Contracts
Sometimes, changes you make to one part of your code affect the contract 
elsewhere in your interface in subtle ways. The two primary ways this hap-
pens are through re-exports and auto-traits.

Re-Exports

If any part of your interface exposes foreign types, then any change to 
one of those foreign types is also a change to your interface. For example, 
consider what happens if you move to a new major version of a dependency 
and expose a type from that dependency as, say, an iterator type in your 
interface. A user that depends on your interface may also depend directly 
on that dependency and expect that the type your interface provides is the 
same as the one by the same name in that dependency. But if you change 
the major version of your dependency, that is no longer true even though 
the name of the type is the same. Listing 3-7 shows an example of this.

// your crate: bestiter
pub fn iter<T>() -> itercrate::Empty<T> { .. }
// their crate
struct EmptyIterator { it: itercrate::Empty<()> }
EmptyIterator { it: bestiter::iter() }

Listing 3-7: Re-exports make foreign crates part of your interface contract.
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If your crate moves from itercrate 1.0 to itercrate 2.0 but otherwise does 
not change, the code in this listing will no longer compile. Even though no 
types have changed, the compiler believes (correctly) that itercrate1.0::Empty 
and itercrate2.0::Empty are different types. Therefore, you cannot assign the 
latter to the former, making this a breaking change in your interface.

To mitigate issues like this, it’s often best to wrap foreign types using 
the newtype pattern, and then expose only the parts of the foreign type 
that you think are useful. In many cases, you can avoid the newtype wrap-
per altogether by using impl Trait to provide only the very minimal contract 
to the caller. By promising less, you make fewer changes breaking.

T HE SEM V ER T R ICK

The itercrate example may have rubbed you the wrong way . If the Empty type 
did not change, then why does the compiler not allow anything that uses it to 
keep working, regardless of whether the code is using version 1 .0 or 2 .0 of it? 
The answer is  .  .  . complicated . It boils down to the fact that the Rust compiler 
does not assume that just because two types have the same fields, they are the 
same . To take a simple example of this, imagine that itercrate 2 .0 added a 
#[derive(Copy)] for Empty . Now, the type suddenly has different move seman-
tics depending on whether you are using 1 .0 or 2 .0! And code written with one 
in mind won’t work with the other .

This problem tends to crop up in large, widely used libraries, where over 
time, breaking changes are likely to have to happen somewhere in the crate . 
Unfortunately, semantic versioning happens at the crate level, not the type level, 
so a breaking change anywhere is a breaking change everywhere .

But all is not lost . A few years ago, David Tolnay (the author of serde, 
among a vast number of other Rust contributions) came up with a neat trick to 
handle exactly this kind of situation . He called it “the semver trick .” The idea 
is simple: if some type T stays the same across a breaking change (from 1 .0 
to 2 .0, say), then after releasing 2 .0, you can release a new 1 .0 minor version 
that depends on 2 .0 and replaces T with a re-export of T from 2 .0 .

By doing this, you’re ensuring that there is in fact only a single type T 
across both major versions . This, in turn, means that any crate that depends on 
1 .0 will be able to use a T from 2 .0, and vice versa . And because this happens 
only for types you explicitly opt into with this trick, changes that were in fact 
breaking will continue to be .

Auto-Traits

Rust has a handful of traits that are automatically implemented for every 
type depending on what that type contains. The most relevant of these for 
this discussion are Send and Sync, though the Unpin, Sized, and UnwindSafe 
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traits have similar issues. By their very nature, these add a hidden promise 
made by nearly every type in your interface. These traits even propagate 
through otherwise type-erased types like impl Trait.

Implementations for these traits are (generally) automatically added by 
the compiler, but that also means that they are not automatically added if 
they no longer apply. So, if you have a public type A that contains a private 
type B, and you change B so that it is no longer Send, then A is now also not 
Send. That is a breaking change!

These changes can be hard to keep track of and are often not discov-
ered until a user of your interface complains that their code no longer 
works. To catch these cases before they happen, it’s good practice to include 
some simple tests in your test suite that check that all your types implement 
these traits the way you expect. Listing 3-8 gives an example of what such a 
test might look like.

fn is_normal<T: Sized + Send + Sync + Unpin>() {}
#[test]
fn normal_types() {
  is_normal::<MyType>();
}

Listing 3-8: Testing that a type implements a set of traits

Notice that this test does not run any code, but simply tests that the 
code compiles. If MyType no longer implements Sync, the test code will not 
compile, and you will know that the change you just made broke the auto-
trait implementation.

HIDING IT EMS F ROM DOCUMEN TAT ION

The #[doc(hidden)] attribute lets you hide a public item from your documenta-
tion without making it inaccessible to code that happens to know it is there . This 
is often used to expose methods and types that are needed by macros, but not 
by user code . How such hidden items interact with your interface contract is a 
matter of some debate . In general, items marked as #[doc(hidden)] are only 
considered part of your contract insofar as their public effects; for example, if 
user code may end up containing a hidden type, then whether that type is Send 
or not is part of the contract, whereas its name is not . Hidden inherent methods 
and hidden trait methods on sealed traits are not generally part of your inter-
face contract, though you should make sure to state this clearly in the documen-
tation for those methods . And yes, hidden items should still be documented!
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Summary
In this chapter we’ve explored the many facets of designing a Rust inter-
face, whether it’s intended for external use or just as an abstraction bound-
ary between the different modules within your crate. We covered a lot of 
specific pitfalls and tricks, but ultimately, the high-level principles are what 
should guide your thinking: your interfaces should be unsurprising, flex-
ible, obvious, and constrained. In the next chapter, we will dig into how to 
represent and handle errors in Rust code.



4
E R R O R  H A N D L I N G

For all but the simplest programs, you will 
have methods that can fail. In this chap-

ter, we’ll look at different ways to represent, 
handle, and propagate those failures and 

the advantages and drawbacks of each. We’ll start by 
exploring different ways to represent errors, including 
enumeration and erasure, and then examine some 
special error cases that require a different representa-
tion technique. Next, we’ll look at various ways of han-
dling errors and the future of error handling. 

It’s worth noting that best practices for error handling in Rust are still 
an active topic of conversation, and at the time of writing, the ecosystem 
has not yet settled on a single, unified approach. This chapter will therefore 
focus on the underlying principles and techniques rather than recommend-
ing specific crates or patterns.
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Representing Errors
When you write code that can fail, the most important question to ask your-
self is how your users will interact with any errors returned. Will users need 
to know exactly which error happened and the minutiae about what went 
wrong, or will they simply log that an error occurred and move on as best 
they can? To understand this, we have to look at whether the nature of the 
error is likely to affect what the caller does upon receiving it. This in turn 
will dictate how we represent different errors. 

You have two main options for representing errors: enumeration and era-
sure. That is, you can either have your error type enumerate the possible error 
conditions so that the caller can distinguish them, or you can just provide the 
caller with a single, opaque error. Let’s discuss these two options in turn.

Enumeration
For our example, we’ll use a library function that copies bytes from some 
input stream into some output stream, much like std::io::copy. The user 
provides you with two streams, one to read from and one to write to, and 
you copy the bytes from one to the other. During this process, it’s entirely 
possible for either stream to fail, at which point the copy has to stop and 
return an error to the user. Here, the user will likely want to know whether 
it was the input stream or the output stream that failed. For example, in a 
web server, if an error occurs on the input stream while streaming a file to a 
client, it might be because a disk was ejected, whereas if the output stream 
errors, maybe the client just disconnected. The latter may be an error the 
server should ignore, since copies to new connections can still complete, 
whereas the former may require that the whole server be shut down!

This is a case where we want to enumerate the errors. The user needs 
to be able to distinguish between the different error cases so that they can 
respond appropriately, so we use an enum named CopyError, with each variant 
representing a separate underlying cause for the error, like in Listing 4-1.

pub enum CopyError {
  In(std::io::Error),
  Out(std::io::Error),
}

Listing 4-1: An enumerated error type

Each variant also includes the error that was encountered to provide 
the caller with as much information about went wrong as possible.

When making your own error type, you need to take a number of steps to 
make the error type play nicely with the rest of the Rust ecosystem. First, your 
error type should implement the std::error::Error trait, which provides call-
ers with common methods for introspecting error types. The main method of 
interest is Error::source, which provides a mechanism to find the underlying 
cause of an error. This is most commonly used to print a backtrace that dis-
plays a trace all the way back to the error’s root cause. For our CopyError type, 
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the implementation of source is straightforward: we match on self and extract 
and return the inner std::io::Error.

Second, your type should implement both Display and Debug so that call-
ers can meaningfully print your error. This is required if you implement the 
Error trait. In general, your implementation of Display should give a one-line 
description of what went wrong that can easily be folded into other error mes-
sages. The display format should be lowercase and without trailing punctua-
tion so that it fits nicely into other, larger error reports. Debug should provide 
a more descriptive error including auxiliary information that may be useful 
in tracking down the cause of the error, such as port numbers, request identi-
fiers, filepaths, and the like, which #[derive(Debug)] is usually sufficient for.

N O T E  In older Rust code, you may see references to the Error::description method, but this 
has been deprecated in favor of Display.

Third, your type should, if possible, implement both Send and Sync so 
that users are able to share the error across thread boundaries. If your error 
type is not thread-safe, you will find that it’s almost impossible to use your 
crate in a multithreaded context. Error types that implement Send and Sync 
are also much easier to use with the very common std::io::Error type, which 
is able to wrap errors that implement Error, Send, and Sync. Of course, not all 
error types can reasonably be Send and Sync, such as if they’re tied to particu-
lar thread-local resources, and that’s okay. You’re probably not sending those 
errors across thread boundaries either. However, it’s something to be aware 
of before you go placing Rc<String> and RefCell<bool> types in your errors.

Finally, where possible, your error type should be 'static. The most 
immediate benefit of this is that it allows the caller to more easily propagate 
your error up the call stack without running into lifetime issues. It also 
enables your error type to be used more easily with type-erased error types, 
as we’ll see shortly.

Opaque Errors
Now let’s consider a different example: an image decoding library. You 
give the library a bunch of bytes to decode, and it gives you access to vari-
ous image manipulation methods. If the decoding fails, the user needs to 
be able to figure out how to resolve the issue, and so must understand the 
cause. But is it important whether the cause is the size field in the image 
header being invalid, or the compression algorithm failing to decompress 
a block? Probably not—the application can’t meaningfully recover from 
either situation, even if it knows the exact cause. In cases like this, you as 
the library author may instead want to provide a single, opaque error type. 
This also makes your library a little nicer to use, because there is only one 
error type in use everywhere. This error type should implement Send, Debug, 
Display, and Error (including the source method where appropriate), but 
beyond that, the caller doesn’t need to know anything more. You might 
internally represent more fine-grained error states, but there is no need 
to expose those to the users of the library. Doing so would only serve to 
unnecessarily increase the size and complexity of your API.
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Exactly what your opaque error type should be is mostly up to you. It 
could just be a type with all private fields that exposes only limited meth-
ods for displaying and introspecting the error, or it could be a severely 
type-erased error type like Box<dyn Error + Send + Sync + 'static>, which 
reveals nothing more than the fact that it is an error and does not gener-
ally let your users introspect at all. Deciding how opaque to make your 
error types is mostly a matter of whether there is anything interesting 
about the error beyond its description. With Box<dyn Error>, you leave your 
users with little option but to bubble up your error. That might be fine if 
it truly has no information of value to present to the user—for example, if 
it’s just a dynamic error message or is one of a large number of unrelated 
errors from deeper inside your program. But if the error has some inter-
esting facets to it, such as a line number or a status code, you may want to 
expose that through a concrete but opaque type instead.

N O T E  In general, the community consensus is that errors should be rare and therefore should 
not add much cost to the “happy path.” For that reason, errors are often placed behind 
a pointer type, such as a Box or Arc. This way, they’re unlikely to add much to the size 
of the overall Result type they’re contained within.

One benefit of using type-erased errors is that it allows you to easily 
combine errors from different sources without having to introduce addi-
tional error types. That is, type-erased errors often compose nicely, and allow 
you to express an open-ended set of errors. If you write a function whose 
return type is Box<dyn Error + ...>, then you can use ? across different error 
types inside that function, on all sorts of different errors, and they will all 
be turned into that one common error type.

The 'static bound on Box<dyn Error + Send + Sync + 'static> is worth 
spending a bit more time on in the context of erasure. I mentioned in the 
previous section that it’s useful for letting the caller propagate the error 
without worrying about the lifetime bounds of the method that failed, but 
it serves an even bigger purpose: access to downcasting. Downcasting is the 
process of taking an item of one type and casting it to a more specific type. 
This is one of the few cases where Rust gives you access to type information at 
runtime; it’s a limited case of the more general type reflection that dynamic 
languages often provide. In the context of errors, downcasting allows a user to 
turn a dyn Error into a concrete underlying error type when that dyn Error was 
originally of that type. For example, the user may want to take a particular 
action if the error they received was a std::io::Error of kind std::io::ErrorKind
::WouldBlock, but they would not take that same action in any other case. If the 
user gets a dyn Error, they can use Error::downcast_ref to try to downcast the 
error into a std::io::Error. The downcast_ref method returns an Option, which 
tells the user whether or not the downcast succeeded. And here is the key 
observation: downcast_ref works only if the argument is 'static. If we return an 
opaque Error that’s not 'static, we take away the user’s ability to do this kind of 
error introspection should they wish.

There’s some disagreement in the ecosystem about whether a library’s 
type-erased errors (or more generally, its type-erased types) are part of 
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its public and stable API. That is, if the method foo in your library returns 
lib::MyError as a Box<dyn Error>, would changing foo to return a different 
error type be a breaking change? The type signature hasn’t changed, but 
users may have written code that assumes that they can use downcast to 
turn that error back into lib::MyError. My opinion on this matter is that 
you chose to return Box<dyn Error> (and not lib::MyError) for a reason, and 
unless explicitly documented, that does not guarantee anything in particu-
lar about downcasting.

N O T E  While Box<dyn Error + ...> is an attractive type-erased error type, it counter-
intuitively does not itself implement Error. Therefore, consider adding your own 
BoxError type for type erasure in libraries that does implement Error.

You may wonder how Error::downcast_ref can be safe. That is, how does 
it know whether a provided dyn Error argument is indeed of the given type 
T? The standard library even has a trait called Any that is implemented for 
any type, and which implements downcast_ref for dyn Any—how can that 
be okay? The answer lies in the compiler-supported type std::any::TypeId, 
which allows you to get a unique identifier for any type. The Error trait has 
a hidden provided method called type_id, whose default implementation is 
to return TypeId::of::<Self>(). Similarly, Any has a blanket implementation 
of impl Any for T, and in that implementation, its type_id returns the same. 
In the context of these impl blocks, the concrete type of Self is known, so 
this type_id is the type identifier of the real type. That provides all the infor-
mation downcast_ref needs. downcast_ref calls self.type_id, which forwards 
through the vtable for dynamically sized types (see Chapter 2) to the imple-
mentation for the underlying type and compares that to the type identifier 
of the provided downcast type. If they match, then the type behind the dyn 
Error or dyn Any really is T, and it is safe to cast from a reference to one to a 
reference to the other.

Special Error Cases
Some functions are fallible but cannot return any meaningful error if they 
fail. Conceptually, these functions have a return type of Result<T, ()>. In 
some codebases, you may see this represented as Option<T> instead. While 
both are legitimate choices for the return type for such a function, they 
convey different semantic meanings, and you should usually avoid “simplify-
ing” a Result<T, ()> to Option<T>. An Err(()) indicates that an operation failed 
and should be retried, reported, or otherwise handled exceptionally. None, 
on the other hand, conveys only that the function has nothing to return; 
it is usually not considered an exceptional case or something that should 
be handled. You can see this in the #[must_use] annotation on the Result 
type—when you get a Result, the language expects that it is important to 
handle both cases, whereas with an Option, neither case actually needs to 
be handled.
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N O T E  You should also keep in mind that () does not implement the Error trait. This means 
that it cannot be type-erased into Box<dyn Error> and can be a bit of a pain to use 
with ?. For this reason, it is often better to define your own unit struct type, imple-
ment Error for it, and use that as the error instead of () in these cases.

Some functions, like those that start a continuously running server 
loop, only ever return errors; unless an error occurs, they run forever. Other 
functions never error but need to return a Result nonetheless, for example, 
to match a trait signature. For functions like these, Rust provides the never 
type, written with the ! syntax. The never type represents a value that can 
never be generated. You cannot construct an instance of this type  yourself—
the only way to make one is by entering an infinite loop or panicking, or 
through a handful of other special operations that the compiler knows never 
return. With Result, when you have an Ok or Err that you know will never 
be used, you can set it to the ! type. If you write a function that returns 
Result<T, !>, you will be unable to ever return Err, since the only way to do 
so is to enter code that will never return. Because the compiler knows that 
any variant with a ! will never be produced, it can also optimize your code 
with that in mind, such as by not generating the panic code for an unwrap on 
Result<T, !>. And when you pattern match, the compiler knows that any vari-
ant that contains a ! does not even need to be listed. Pretty neat!

One last curious error case is the error type std::thread::Result. Here’s 
its definition:

type Result<T> = Result<T, Box<dyn Any + Send + 'static>>;

The error type is type-erased, but it’s not erased into a dyn Error as 
we’ve seen so far. Instead, it is a dyn Any, which guarantees only that the 
error is some type, and nothing more . . . which is not much of a guarantee 
at all. The reason for this curious-looking error type is that the error vari-
ant of std::thread::Result is produced only in response to a panic; specifi-
cally, if you try to join a thread that has panicked. In that case, it’s not clear 
that there’s much the joining thread can do other than either ignore the 
error or panic itself using unwrap. In essence, the error type is “a panic” and 
the value is “whatever argument was passed to panic!,” which can truly be 
any type (even though it’s usually a formatted string).

Propagating Errors
Rust’s ? operator acts as a shorthand for unwrap or return early, for working 
easily with errors. But it also has a few other tricks up its sleeve that are worth 
knowing about. First, ? performs type conversion through the From trait. In  
a function that returns Result<T, E>, you can use ? on any Result<T, X> where 
E: From<X>. This is the feature that makes error erasure through Box<dyn Error> 
so appealing; you can just use ? everywhere and not worry about the particu-
lar error type, and it will usually “ just work.”
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F ROM A ND IN TO

The standard library has many conversion traits, but two of the core ones are 
From and Into . It might strike you as odd to have two: if we have From, why 
do we need Into, and vice versa? There are a couple of reasons, but let’s start 
with the historical one: it wouldn’t have been possible to have just one in the 
early days of Rust due to the coherence rules discussed in Chapter 2 . Or, more 
specifically, what the coherence rules used to be .

Suppose you want to implement two-way conversion between some 
local type you have defined in your crate and some type in the standard 
library . You can write impl<T> From<Vec<T>> for MyType<T> and impl<T> 
Into<Vec<T>> for MyType<T> easily enough, but if you only had From or Into, 
you would have to write impl<T> From<MyType<T>> for Vec<T> or impl<T> 
Into<MyType<T>> for Vec<T> . However, the compiler used to reject those 
implementations! Only since Rust 1 .41 .0, when the exception for covered types 
was added to the coherence rules, are they legal . Before that change, it was 
necessary to have both traits . And since much Rust code was written before 
Rust 1 .41 .0, neither trait can be removed now .

Beyond that historical fact, however, there are also good ergonomic rea-
sons to have both of these traits, even if we could start from scratch today . It is 
often significantly easier to use one or the other in different situations . For exam-
ple, if you’re writing a method that takes a type that can be turned into a Foo, 
would you rather write fn(impl Into<Foo>) or fn<T>(T) where Foo: From<T>? 
And conversely, to turn a string into a syntax identifier, would you rather write 
Ident::from("foo") or <_ as Into<Ident>>::into("foo")? Both of these traits 
have their uses, and we’re better off having them both .

Given that we do have both, you may wonder which you should use in 
your code today . The answer, it turns out, is pretty simple: implement From, and 
use Into in bounds . The reason is that Into has a blanket implementation for 
any T that implements From, so regardless of whether a type explicitly imple-
ments From or Into, it implements Into!

Of course, as simple things frequently go, the story doesn’t quite end there . 
Since the compiler often has to “go through” the blanket implementation when 
Into is used as a bound, the reasoning for whether a type implements Into 
is more complicated than whether it implements From . And in some cases, the 
compiler is not quite smart enough to figure that puzzle out . For this reason, 
the ? operator at the time of writing uses From, not Into . Most of the time that 
doesn’t make a difference, because most types implement From, but it does 
mean that error types from old libraries that implement Into instead may not 
work with ? . As the compiler gets smarter, ? will likely be “upgraded” to use 
Into, at which point that problem will go away, but it's what we have for now .
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The second aspect of ? to be aware of is that this operator is really just 
syntax sugar for a trait tentatively called Try. At the time of writing, the Try 
trait has not yet been stabilized, but by the time you read this, it’s likely that 
it, or something very similar, will have been settled on. Since the details 
haven’t all been figured out yet, I’ll give you only an outline of how Try 
works, rather than the full method signatures. At its heart, Try defines a 
wrapper type whose state is either one where further computation is useful 
(the happy path), or one where it is not. Some of you will correctly think 
of monads, though we won’t explore that connection here. For example, in 
the case of Result<T, E>, if you have an Ok(t), you can continue on the happy 
path by unwrapping the t. If you have an Err(e), on the other hand, you 
want to stop executing and produce the error value immediately, since fur-
ther computation is not possible as you don’t have the t. 

What’s interesting about Try is that it applies to more types than just 
Result. An Option<T>, for example, follows the same pattern—if you have a 
Some(t), you can continue on the happy path, whereas if you have a None, you 
want to yield None instead of continuing. This pattern extends to more com-
plex types, like Poll<Result<T, E>>, whose happy path type is Poll<T>, which 
makes ? apply in far more cases than you might expect. When Try stabilizes, 
we may see ? start to work with all sorts of types to make our happy path 
code nicer.

The ? operator is already usable in fallible functions, in doctests, and in 
fn main. To reach its full potential, though, we also need a way to scope this 
error handling. For example, consider the function in Listing 4-2.

fn do_the_thing() -> Result<(), Error> {
  let thing = Thing::setup()?;
  // .. code that uses thing and ? ..
  thing.cleanup();
  Ok(())
}

Listing 4-2: A multi-step fallible function using the ? operator

This won’t quite work as expected. Any ? between setup and cleanup 
will cause an early return from the entire function, which would skip the 
cleanup code! This is the problem try blocks are intended to solve. A try block 
acts pretty much like a single-iteration loop, where ? uses break instead of 
return, and the final expression of the block has an implicit break. We can 
now fix the code in Listing 4-2 to always do cleanup, as shown in Listing 4-3.

fn do_the_thing() -> Result<(), Error> {
  let thing = Thing::setup()?;
  let r = try {
    // .. code that uses thing and ? ..
  };
  thing.cleanup();
  r
}

Listing 4-3: A multi-step fallible function that always cleans up after itself



Error Handling   65

Try blocks are also not stable at the time of writing, but there is enough 
of a consensus on their usefulness that they’re likely to land in a form simi-
lar to that described here.

Summary
This chapter covered the two primary ways to construct error types in Rust: 
enumeration and erasure. We looked at when you may want to use each one 
and the advantages and drawbacks of each. We also took a look at some of 
the behind-the-scenes aspects of the ? operator and considered how ? may 
become even more useful going forward. In the next chapter, we’ll take a 
step back from the code and look at how you structure a Rust project. We’ll 
look at feature flags, dependency management, and versioning as well as 
how to manage more complex crates using workspaces and subcrates. See 
you on the next page!





5
P R O J E C T  S T R U C T U R E

This chapter provides some ideas for struc-
turing your Rust projects. For simple proj-

ects, the structure set up by cargo new is likely 
to be something you think little about. You 

may add some modules to split up the code, and some  
dependencies for additional functionality, but that’s about it. However, as a 
project grows in size and complexity, you’ll find that you need to go beyond 
that. Maybe the compilation time for your crate is getting out of hand, or 
you need conditional dependencies, or you need a better strategy for con-
tinuous integration. In this chapter, we will look at some of the tools that the 
Rust language, and Cargo in particular, provide that make it easier to man-
age such things.

Features
Features are Rust’s primary tool for customizing projects. At its core, a fea-
ture is just a build flag that crates can pass to their dependencies in order 
to add optional functionality. Features carry no semantic meaning in and of 
themselves—instead, you choose what a feature means for your crate.
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Generally, we use features in three ways: to enable optional dependencies, 
to conditionally include additional components of a crate, and to augment the 
behavior of the code. Note that all of these uses are additive; features can add 
to the functionality of the crate, but they shouldn’t generally do things like 
remove modules or replace types or function signatures. This stems from the 
principle that if a developer makes a simple change to their Cargo.toml, such 
as adding a new dependency or enabling a feature, that shouldn’t make their 
crate stop compiling. If a crate has mutually exclusive features, that principle 
quickly falls by the wayside—if crate A depends on one feature of crate C, 
and crate B on another mutually exclusive feature of C, adding a dependency 
on crate B would then break crate A! For that reason, we generally follow the 
principle that if crate A compiles against crate C with some set of features, it 
should also compile if all features are enabled on crate C. 

Cargo leans into this principle quite hard. For example, if two crates 
(A and B) both depend on crate C, but they each enable different features 
on C, Cargo will compile crate C only once, with all the features that either 
A or B requires. That is, it’ll take the union of the requested features for C 
across A and B. Because of this, it’s generally hard to add mutually exclusive 
features to Rust crates; chances are that some two dependents will depend 
on the crate with different features, and if those features are mutually 
exclusive, the downstream crate will fail to build.

N O T E  I highly recommend that you configure your continuous integration infrastructure to 
check that your crate compiles for any combination of its features. One tool that helps you 
do this is cargo-hack, which you can find at https://github.com/taiki-e/cargo-hack/.

Defining and Including Features
Features are defined in Cargo.toml. Listing 5-1 shows an example of a crate 
named foo with a simple feature that enables the optional dependency syn.

[package]
name = "foo"
...
[features]
derive = ["syn"]

[dependencies]
syn = { version = "1", optional = true }

Listing 5-1: A feature that enables an optional dependency

When Cargo compiles this crate, it will not compile the syn crate by default,  
which reduces compile time (often significantly). The syn crate will be com-
piled only if a downstream crate needs to use the APIs enabled by the derive 
feature and explicitly opts in to it. Listing 5-2 shows how such a downstream  
crate bar would enable the derive feature, and thus include the syn dependency.

[package]
name = "bar"
...

https://github.com/taiki-e/cargo-hack
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[dependencies]
foo = { version = "1", features = ["derive"] }

Listing 5-2: Enabling a feature of a dependency

Some features are used so frequently that it makes more sense to have a 
crate opt out of them rather than in to them. To support this, Cargo allows 
you to define a set of default features for a crate. And similarly, it allows you 
to opt out of the default features of a dependency. Listing 5-3 shows how 
foo can make its derive feature enabled by default, while also opting out of 
some of syn’s default features and instead enabling only the ones it needs 
for the derive feature.

[package]
name = "foo"
...
[features]
derive = ["syn"]
default = ["derive"]

[dependencies.syn]
version = "1"
default-features = false
features = ["derive", "parsing", "printing"]
optional = true

Listing 5-3: Adding and opting out of default features, and thus optional dependencies

Here, if a crate depends on foo and does not explicitly opt out of the 
default features, it will also compile foo’s syn dependency. In turn, syn will 
be built with only the three listed features, and no others. Opting out of 
default features this way, and opting in to only what you need, is a great way 
to cut down on your compile times!

OP T ION A L DEPENDENCIES A S F E AT UR ES

When you define a feature, the list that follows the equal sign is itself a list of 
features . This might, at first, sound a little odd—in Listing 5-3, syn is a depen-
dency, not a feature . It turns out that Cargo makes every optional dependency 
a feature with the same name as the dependency . You’ll see this if you try to 
add a feature with the same name as an optional dependency; Cargo won’t 
allow it . Support for a different namespace for features and dependencies is 
in the works in Cargo, but has not been stabilized at the time of writing . In the 
meantime, if you want to have a feature named after a dependency, you can 
rename the dependency using package = "" to avoid the name collision . The list 
of features that a feature enables can also include features of dependencies . 
For example, you can write derive = ["syn/derive"] to have your derive fea-
ture enable the derive feature of the syn dependency .
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Using Features in Your Crate
When using features, you need to make sure your code uses a dependency 
only if it is available. And if your feature enables a particular component, 
you need to make sure that if the feature isn’t enabled, the component is 
not included.

You achieve this using conditional compilation, which lets you use annota-
tions to give conditions under which a particular piece of code should or 
should not be compiled. Conditional compilation is primarily expressed 
using the #[cfg] attribute. There is also the closely related cfg! macro, which 
lets you change runtime behavior based on similar conditions. You can do 
all sorts of neat things with conditional compilation, as we’ll see later in this 
chapter, but the most basic form is #[cfg(feature = "some-feature")], which 
makes it so that the next “thing” in the source code is compiled only if the 
some-feature feature is enabled. Similarly, if cfg!(feature = "some-feature") 
is equivalent to if true only if the derive feature is enabled (and if false 
otherwise).

The #[cfg] attribute is used more often than the cfg! macro, because 
the macro modifies runtime behavior based on the feature, which can 
make it difficult to ensure that features are additive. You can place #[cfg] 
in front of certain Rust items—such as functions and type definitions, impl 
blocks, modules, and use statements—as well as on certain other constructs 
like struct fields, function arguments, and statements. The #[cfg] attribute 
can’t go just anywhere, though; where it can appear is carefully restricted by 
the Rust language team so that conditional compilation can’t cause situa-
tions that are too strange and hard to debug.

Remember that modifying certain public parts of your API may inad-
vertently make a feature nonadditive, which in turn may make it impos-
sible for some users to compile your crate. You can often use the rules for 
backward compatible changes as a rule of thumb here—for example, if you 
make an enum variant or a public struct field conditional upon a feature, 
then that type must also be annotated with #[non_exhaustive]. Otherwise, 
a dependent crate that does not have the feature enabled may no longer 
compile if the feature is added due to some second crate in the depen-
dency tree.

N O T E  If you’re writing a large crate where you expect that your users will need only a subset 
of the functionality, you should consider making it so that larger components (usually 
modules) are guarded by features. That way, users can opt in to, and pay the compi-
lation cost of, only the parts they really need.

Workspaces
Crates play many roles in Rust—they are the vertices in the dependency 
graph, the boundaries for trait coherence, and the scopes for compilation 
features. Because of this, each crate is managed as a single compilation 
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unit; the Rust compiler treats a crate more or less as one big source file 
compiled as one chunk that is ultimately turned into a single binary output 
(either a binary or a library).

While this simplifies many aspects of the compiler, it also means that 
large crates can be painful to work with. If you change a unit test, a comment, 
or a type in one part of your application, the compiler must re- evaluate the 
entire crate to determine what, if anything, changed. Internally, the compiler 
implements a number of mechanisms to speed up this process, like incremen-
tal recompilation and parallel code generation, but ultimately the size of your 
crate is a big factor in how long your project takes to compile.

For this reason, as your project grows, you may want to split it into 
multiple crates that internally depend on one another. Cargo has just the 
feature you need to make this convenient: workspaces. A workspace is a col-
lection of crates (often called subcrates) that are tied together by a top-level 
Cargo.toml file like the one shown in Listing 5-4.

[workspace]
members = [
  "foo",
  "bar/one",
  "bar/two",
]

Listing 5-4: A workspace Cargo .toml

The members array is a list of directories that each contain a crate in 
the workspace. Those crates all have their own Cargo.toml files in their own 
subdirectories, but they share a single Cargo.lock file and a single output 
directory.  The crate names don’t need to match the entry in members. It is 
common, but not required, that crates in a workspace share a name prefix, 
usually chosen as the name of the “main” crate. For example, in the tokio 
crate, the members are called tokio, tokio-test, tokio-macros, and so on.

Perhaps the most important feature of workspaces is that you can inter-
act with all of the workspace’s members by invoking cargo in the root of the 
workspace. Want to check that they all compile? cargo check will check them 
all. Want to run all your tests? cargo test will test them all. It’s not quite as 
convenient as having everything in one crate, so don’t go splitting every-
thing into minuscule crates, but it’s a pretty good approximation.

N O T E  Cargo commands will generally do the “right thing” in a workspace. If you ever need 
to disambiguate, such as if two workspace crates both have a binary by the same 
name, use the -p flag (for package). If you are in the subdirectory for a particular 
workspace crate, you can pass --workspace to perform the command for the entire 
workspace instead.

Once you have a workspace-level Cargo.toml with the array of workspace 
members, you can set your crates to depend on one another using path 
dependencies, as shown in Listing 5-5.
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# bar/two/Cargo.toml
[dependencies]
one = { path = "../one" }
# bar/one/Cargo.toml
[dependencies]
foo = { path = "../../foo" }

Listing 5-5: Intercrate dependencies among workspace crates

Now if you make a change to the crate in bar/two, then only that crate 
is re-compiled, since foo and bar/one did not change. It may even be faster 
to compile your project from scratch, since the compiler does not need to 
evaluate your entire project source for optimization opportunities.

SPECIF Y ING IN T R A-WOR KSPACE DEPENDENCIES

The most obvious way to specify that one crate in a workspace depends on 
another is to use the path specifier, as shown in Listing 5-5 . However, if your 
individual subcrates are intended for public consumption, you may want to use 
version specifiers instead .

Say you have a crate that depends on a Git version of the one crate from 
the bar workspace in Listing 5-5 with one = { git = ". . ." }, and a released 
version of foo (also from bar) with foo = "1.0.0" . Cargo will dutifully fetch 
the one Git repository, which holds the entire bar workspace, and see that one 
in turn depends on foo, located at ../../foo inside the workspace . But Cargo 
doesn’t know that the released version foo = "1.0.0" and the foo in the Git 
repository are the same crate! It considers them two separate dependencies 
that just happen to have the same name .

You may already see where this is going . If you try to use any type from 
foo (1.0.0) with an API from one that accepts a type from foo, the compiler will 
reject the code . Even though the types have the same name, the compiler can’t 
know that they are the same underlying type . And the user will be thoroughly 
confused, since the compiler will say something like “expected foo::Type, got 
foo::Type .”

The best way to mitigate this problem is to use path dependencies between 
subcrates only if they depend on unpublished changes . As long as one works 
with foo 1.0.0, it should list foo = "1.0.0" in its dependencies . Only if you 
make a change to foo that one needs should you change one to use a path 
dependency . And once you release a new version of foo that one can depend 
on, you should remove the path dependency again .

This approach also has its shortcomings . Now if you change foo and then 
run the tests for one, you’ll see that one will be tested using the old foo, which 
may not be what you expected . You’ll probably want to configure your continu-
ous integration infrastructure to test each subcrate both with the latest released 
versions of the other subcrates and with all of them configured to use path 
dependencies .
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Project Configuration
Running cargo new sets you up with a minimal Cargo.toml that has the crate’s 
name, its version number, some author information, and an empty list of 
dependencies. That will take you pretty far, but as your project matures, there 
are a number of useful things you may want to add to your Cargo.toml.

Crate Metadata
The first and most obvious thing to add to your Cargo.toml is all the meta-
data directives that Cargo supports. In addition to obvious fields like 
description and homepage, it can be useful to include information such as 
the path to a README for the crate (readme), the default binary to run 
with cargo run (default-run), and additional keywords and categories to help 
crates.io categorize your crate.

For crates with a more convoluted project layout, it’s also useful to set 
the include and exclude metadata fields. These dictate which files should be 
included and published in your package. By default, Cargo includes all files 
in a crate’s directory except any listed in your .gitignore file, but this may not 
be what you want if you also have large test fixtures, unrelated scripts, or 
other auxiliary data in the same directory that you do want under version 
control. As their names suggest, include and exclude allow you to include 
only a specific set of files or exclude files matching a given set of patterns, 
respectively.

N O T E  If you have a crate that should never be published, or should be published only to cer-
tain alternative registries (that is, not to crates.io), you can set the publish directive 
to false or to a list of allowed registries.

The list of metadata directives you can use continues to grow, so make 
sure to periodically check in on the Manifest Format page of the Cargo ref-
erence (https://doc.rust-lang.org/cargo/reference/manifest.html).

Build Configuration
Cargo.toml can also give you control over how Cargo builds your crate. 
The most obvious tool for this is the build parameter, which allows you to 
write a completely custom build program for your crate (we’ll revisit this 
in Chapter 11). However, Cargo also provides two smaller, but very useful, 
mechanisms that we’ll explore here: patches and profiles.

[patch]

The [patch] section of Cargo.toml allows you to specify a different source for 
a dependency that you can use temporarily, no matter where in your depen-
dencies the patched dependency appears. This is invaluable when you need 
to compile your crate against a modified version of some transitive depen-
dency to test a bug fix, a performance improvement, or a new minor release 
you’re about to publish. Listing 5-6 shows an example of how you might 
temporarily use a variant of a set of dependencies.

https://doc.rust-lang.org/cargo/reference/manifest.html
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[patch.crates-io]
# use a local (presumably modified) source
regex = { path = "/home/jon/regex" }
# use a modification on a git branch
serde = { git = "https://github.com/serde-rs/serde.git", branch = "faster" }
# patch a git dependency
[patch.'https://github.com/jonhoo/project.git']
project = { path = "/home/jon/project" }

Listing 5-6: Overriding dependency sources in Cargo .toml using [patch]

Even if you patch a dependency, Cargo takes care to check the crate 
versions so that you don’t accidentally end up patching the wrong major ver-
sion of a crate. If you for some reason transitively depend on multiple major 
versions of the same crate, you can patch each one by giving them distinct 
identifiers, as shown in Listing 5-7.

[patch.crates-io]
nom4 = { path = "/home/jon/nom4", package = "nom" }
nom5 = { path = "/home/jon/nom5", package = "nom" }

Listing 5-7: Overriding multiple versions of the same crate in Cargo .toml using [patch]

Cargo will look at the Cargo.toml inside each path, realize that /nom4 
contains major version 4 and that /nom5 contains major version 5, and patch 
the two versions appropriately. The package keyword tells Cargo to look for a 
crate by the name nom in both cases instead of using the dependency identi-
fiers (the part on the left) as it does by default. You can use package this way 
in your regular dependencies as well to rename a dependency!

Keep in mind that patches are not taken into account in the package 
that’s uploaded when you publish a crate. A crate that depends on your 
crate will use only its own [patch] section (which may be empty), not that of 
your crate!

CR AT ES V S. PACK AGES

You may wonder what the difference between a package and a crate is . 
These two terms are often used interchangeably in informal contexts, but they 
also have specific definitions that vary depending on whether you’re talking 
about the Rust compiler, Cargo, crates.io, or something else . I personally think 
of a crate as a Rust module hierarchy starting at a root .rs file (one where you 
can use crate-level attributes like #![feature])—usually something like lib.rs or 
main.rs . In contrast, a package is a collection of crates and metadata, so essen-
tially all that’s described by a Cargo.toml file . That may include a library crate, 
multiple binary crates, some integration test crates, and maybe even multiple 
workspace members that themselves have Cargo.toml files .
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[profile]

The [profile] section lets you pass additional options to the Rust compiler 
in order to change the way it compiles your crate. These options fall pri-
marily into three categories: performance options, debugging options, and 
options that change code behavior in user-defined ways. They all have dif-
ferent defaults depending on whether you are compiling in debug mode or 
in release mode (other modes also exist).

The three primary performance options are opt-level, codegen-units, 
and lto. The opt-level option tweaks runtime performance by telling the 
compiler how aggressively to optimize your program (0 is “not at all,” 3 is “as 
much as you can”). The higher the setting, the more optimized your code 
will be, which may make it run faster. Extra optimization comes at the cost 
of higher compile times, though, which is why optimizations are generally 
enabled only for release builds.

N O T E  You can also set opt-level to "s" to optimize for binary size, which may be important 
on embedded platforms.

The codegen-units option is about compile-time performance. It tells the 
compiler how many independent compilation tasks (code generation units) it 
is allowed to split the compilation of a single crate into. The more pieces a 
large crate’s compilation is split into, the faster it will compile, since more 
threads can help compile the crate in parallel. Unfortunately, to achieve this 
speedup, the threads need to work more or less independently, which means 
code optimization suffers. Imagine, for example, that the segment of a crate 
compiling in one thread could benefit from inlining some code in a differ-
ent segment—since the two segments are independent, that inlining can’t 
happen! This setting, then, is a trade-off between compile-time performance 
and runtime performance. By default, Rust uses an effectively unbounded 
number of codegen units in debug mode (basically, “compile as fast as you 
can”) and a smaller number (16 at the time of writing) in release mode.

The lto setting toggles link-time optimization (LTO), which enables the 
compiler (or the linker, if you want to get technical about it) to jointly 
optimize bits of your program, known as compilation units, that were origi-
nally compiled separately. The exact details of LTO are beyond the scope 
of this book, but the basic idea is that the output from each compilation 
unit includes information about the code that went into that unit. After all 
the units have been compiled, the linker makes another pass over all of the 
units and uses that additional information to optimize the combined com-
piled code. This extra pass adds to the compile time but recovers most of 
the runtime performance that may have been lost due to splitting the com-
pilation into smaller parts. In particular, LTO can offer significant perfor-
mance boosts to  performance-sensitive programs that might benefit from 
cross-crate optimization. Beware, though, that cross-crate LTO can add a 
lot to your compile time.

Rust performs LTO across all the codegen units within each crate by 
default in an attempt to make up for the lost optimizations caused by using 
many codegen units. Since the LTO is performed only within each crate, 
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rather than across crates, this extra pass isn’t too onerous, and the added 
compile time should be lower than the amount of time saved by using a lot 
of codegen units. Rust also offers a technique known as thin LTO, which 
allows the LTO pass to be mostly parallelized, at the cost of missing some 
optimizations a “full” LTO pass would have found.

N O T E  LTO can be used to optimize across foreign function interface boundaries in many 
cases, too. See the linker-plugin-lto rustc flag for more details.

The [profile] section also supports flags that aid in debugging, such as 
debug, debug-assertions, and overflow-checks. The debug flag tells the compiler 
to include debug symbols in the compiled binary. This increases the binary 
size, but it means that you get function names and such, rather than just 
instruction addresses, in backtraces and profiles. The debug-assertions flag 
enables the debug_assert! macro and other related debug code that isn’t 
compiled otherwise (through cfg(debug_assertions)). Such code may make 
your program run slower, but it makes it easier to catch questionable behav-
ior at runtime. The overflow-checks flag, as the name implies, enables over-
flow checks on integer operations. This slows them down (notice a trend 
here?) but can help you catch tricky bugs early on. By default, these are all 
enabled in debug mode and disabled in release mode.

[profile.*.panic]

The [profile] section has another flag that deserves its own subsection: panic. 
This option dictates what happens when code in your program calls panic!, 
either directly or indirectly through something like unwrap. You can set panic to 
either unwind (the default on most platforms) or abort. We’ll talk more about 
panics and unwinding in Chapter 9, but I’ll give a quick summary here.

Normally in Rust, when your program panics, the thread that panicked 
starts unwinding its stack. You can think of unwinding as forcibly return-
ing recursively from the current function all the way to the bottom of that 
thread’s stack. That is, if main called foo, foo called bar, and bar called baz, a 
panic in baz would forcibly return from baz, then bar, then foo, and finally 
from main, resulting in the program exiting. A thread that unwinds will 
drop all values on the stack normally, which gives the values a chance to 
clean up resources, report errors, and so on. This gives the running system 
a chance to exit gracefully even in the case of a panic.

When a thread panics and unwinds, other threads continue running 
unaffected. Only when (and if) the thread that ran main exits does the 
program terminate. That is, the panic is generally isolated to the thread in 
which the panic occurred.

This means unwinding is a double-edged sword; the program is limp-
ing along with some failed components, which may cause all sorts of strange 
behaviors. For example, imagine a thread that panics halfway through updat-
ing the state in a Mutex. Any thread that subsequently acquires that Mutex 
must now be prepared to handle the fact that the state may be in a partially 
updated, inconsistent state. For this reason, some synchronization primitives 
(like Mutex) will remember if a panic occurred when they were last accessed 
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and communicate that to any thread that tries to access the primitive subse-
quently. If a thread encounters such a state, it will normally also panic, which 
leads to a cascade that eventually terminates the entire program. But that is 
arguably better than continuing to run with corrupted state!

The bookkeeping needed to support unwinding is not free, and it 
often requires special support by the compiler and the target platform. For 
example, many embedded platforms cannot unwind the stack efficiently at 
all. Rust therefore supports a different panic mode: abort ensures the whole 
program simply exits immediately when a panic occurs. In this mode, no 
threads get to do any cleanup. This may seem severe, and it is, but it ensures 
that the program is never running in a half-working state and that errors are 
made visible immediately. 

W A R N I N G  The panic setting is global—if you set it to abort, all your dependencies are also com-
piled with abort.

You may have noticed that when a thread panics, it tends to print a back-
trace: the trail of function calls that led to where the panic occurred. This is 
also a form of unwinding, though it is separate from the unwinding panic 
behavior discussed here. You can have backtraces even with panic=abort by 
passing -Cforce-unwind-tables to rustc, which makes rustc include the infor-
mation necessary to walk back up the stack while still terminating the pro-
gram on a panic.

PROF IL E OV ER R IDES

You can set profile options for just a particular dependency, or a particular profile, 
using profile overrides . For example, Listing 5-8 shows how to enable aggressive 
optimizations for the serde crate and moderate optimizations for all other crates in 
debug mode, using the [profile.<profile-name>.package.<crate-name>] syntax .

[profile.dev.package.serde]
opt-level = 3
[profile.dev.package."*"]
opt-level = 2

Listing 5-8: Overriding profile options for a specific dependency or for a 
specific mode

This kind of optimization override can be handy if some dependency would 
be prohibitively slow in debug mode (such as decompression or video encod-
ing), and you need it optimized so that your test suite won’t take several days to 
complete . You can also specify global profile defaults using a [profile.dev] (or 
similar) section in the Cargo configuration file in ~/.cargo/config .

When you set optimization parameters for a specific dependency, keep in 
mind that the parameters apply only to the code compiled as part of that crate; 
if serde in this example has a generic method or type that you use in your crate, 

(continued)
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the code of that method or type will be monomorphized and optimized in your 
crate, and your crate’s profile settings will apply, not those in the profile over-
ride for serde .

Conditional Compilation
Most Rust code you write is universal—it’ll work the same regardless of 
what CPU or operating system it runs on. But sometimes you’ll have to do 
something special to get the code to work on Windows, on ARM chips, or 
when compiled against a particular platform application binary interface 
(ABI). Or maybe you want to write an optimized version of a particular 
function when a given CPU instruction is available, or disable some slow but 
uninteresting setup code when running in a continuous integration (CI) 
environment. To cater to cases like these, Rust provides mechanisms for con-
ditional compilation, in which a particular segment of code is compiled only 
if certain conditions are true of the compilation environment.

We denote conditional compilation with the cfg keyword that you saw 
earlier in the chapter in “Using Features in Your Crate.” It usually appears in 
the form of the #[cfg(condition)] attribute, which says to compile the next item 
only if condition is true. Rust also has #[cfg_attr(condition, attribute)], which 
is compiled as #[attribute] if condition holds and is a no-op otherwise. You can 
also evaluate a cfg condition as a Boolean expression using the cfg!(condition) 
macro.

Every cfg construct takes a single condition made up of options, like 
feature = "some-feature", and the combinators all, any, and not, which do 
what you would probably expect. Options are either simple names, like unix, 
or key/value pairs like those used by feature conditions.

There are a number of interesting options you can make compilation 
dependent on. Let’s go through them, from most common to least common:

Feature options
You’ve already seen examples of these. Feature options take the form 
feature = "name-of-feature" and are considered true if the named fea-
ture is enabled. You can check for multiple features in a single condi-
tion using the combinators. For example, any(feature = "f1", feature = 
"f2") is true if either feature f1 or feature f2 is enabled.

Operating system options
These use key/value syntax with the key target_os and values like win-
dows, macos, and linux. You can also specify a family of operating systems 
using target_family, which takes the value windows or unix. These are 
common enough that they have received their own named short forms, 
so you can use cfg(windows) and cfg(unix) directly. For example, if you 
wanted a particular code segment to be compiled only on macOS and 
Windows, you would write: #[cfg(any(windows, target_os = "macos"))].
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Context options
These let you tailor code to a particular compilation context. The most 
common of these is the test option, which is true only when the crate 
is being compiled under the test profile. Keep in mind that test is set 
only for the crate that is being tested, not for any of its dependencies. 
This also means that test is not set in your crate when running inte-
gration tests; it’s the integration tests that are compiled under the test 
profile, whereas your actual crate is compiled normally (that is, without 
test set). The same applies to the doc and doctest options, which are set 
only when building documentation or compiling doctests, respectively. 
There’s also the debug_assertions option, which is set in debug mode by 
default.

Tool options
Some tools, like clippy and Miri, set custom options (more on that 
later) that let you customize compilation when run under these tools. 
Usually, these options are named after the tool in question. For exam-
ple, if you want a particular compute-intensive test not to run under 
Miri, you can give it the attribute #[cfg_attr(miri, ignore)].

Architecture options
These let you compile based on the CPU instruction set the compiler 
is targeting. You can specify a particular architecture with target_arch, 
which takes values like x86, mips, and aarch64, or you can specify a par-
ticular platform feature with target_feature, which takes values like avx 
or sse2. For very low-level code, you may also find the target_endian and 
target_pointer_width options useful.

Compiler options
These let you adapt your code to the platform ABI it is compiled against 
and are available through target_env with values like gnu, msvc, and musl. 
For historical reasons, this value is often empty, especially on GNU 
platforms. You normally need this option only if you need to interface 
directly with the environment ABI, such as when linking against an 
ABI-specific symbol name using #[link].

While cfg conditions are usually used to customize code, some can also 
be used to customize dependencies. For example, the dependency winrt 
usually makes sense only on Windows, and the nix crate is probably useful 
only on Unix-based platforms. Listing 5-9 gives an example of how you can 
use cfg conditions for this:

[target.'cfg(windows)'.dependencies]
winrt = "0.7"
[target.'cfg(unix)'.dependencies]
nix = "0.17"

Listing 5-9: Conditional dependencies
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Here, we specify that winrt version 0.7 should be considered a depen-
dency only under cfg(windows) (so, on Windows), and nix version 0.17 only 
under cfg(unix) (so, on Linux, macOS, and other Unix-based platforms). 
One thing to keep in mind is that the [dependencies] section is evaluated 
very early in the build process, when only certain cfg options are available. 
In particular, feature and context options are not yet available at this point, 
so you cannot use this syntax to pull in dependencies based on features 
and contexts. You can, however, use any cfg that depends only on the target 
specification or architecture, as well as any options explicitly set by tools 
that call into rustc (like cfg(miri)).

N O T E  While we’re on the topic of dependency specifications, I highly recommend that you set 
up your CI infrastructure to perform basic auditing of your dependencies using tools 
like cargo-deny and cargo-audit. These tools will detect cases where you transitively 
depend on multiple major versions of a given dependency, where you depend on 
crates that are unmaintained or have known security vulnerabilities, or where you 
use licenses that you may want to avoid. Using such a tool is a great way to raise the 
quality of your codebase in an automated way!

It’s also quite simple to add your own custom conditional compilation 
options. You just have to make sure that --cfg=myoption is passed to rustc 
when rustc compiles your crate. The easiest way to do this is to add your 
--cfg to the RUSTFLAGS environment variable. This can come in handy in CI, 
where you may want to customize your test suite depending on whether it’s 
being run on CI or on a dev machine: add --cfg=ci to RUSTFLAGS in your CI 
setup, and then use cfg(ci) and cfg(not(ci)) in your code. Options set this 
way are also available in Cargo.toml dependencies.

Versioning
All Rust crates are versioned and are expected to follow Cargo’s implemen-
tation of semantic versioning. Semantic versioning dictates the rules for what 
kinds of changes require what kinds of version increases and for which ver-
sions are considered compatible, and in what ways. The RFC 1105 standard 
itself is well worth reading (it’s not horribly technical), but to summarize, 
it differentiates between three kinds of changes: breaking changes, which 
require a major version change; additions, which require a minor version 
change; and bug fixes, which require only a patch version change. RFC 1105 
does a decent job of outlining what constitutes a breaking change in Rust, 
and we’ve touched on some aspects of it elsewhere in this book.

I won’t go into detail here about the exact semantics of the different 
types of changes. Instead, I want to highlight some less straightforward ways 
version numbers come up in the Rust ecosystem, which you need to keep in 
mind when deciding how to version your own crates.
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Minimum Supported Rust Version
The first Rust-ism is the minimum supported Rust version (MSRV). There is 
much debate in the Rust community about what policy projects should 
adhere to when it comes to their MSRV and versioning, and there’s no truly 
good answer. The core of the problem is that some Rust users are limited to 
using older versions of Rust, often in an enterprise setting where they have 
little choice. If we constantly take advantage of newly stabilized APIs, those 
users will not be able to compile the latest versions of our crates and will be 
left behind.

There are two techniques crate authors can use to make life a little easier 
for users in this position. The first is to establish an MSRV policy promising 
that new versions of a crate will always compile with any stable release from 
the last X months. The exact number varies, but 6 or 12 months is common. 
With Rust’s six-week release cycle, that corresponds to the latest four or eight 
stable releases, respectively. Any new code introduced to the project must 
compile with the MSRV compiler (usually checked by CI) or be held until the 
MSRV policy allows it to be merged as is. This can sometimes be a pain, as it 
means these crates cannot take advantage of the latest and greatest the lan-
guage has to offer, but it will make life easier for your users.

The second technique is to make sure to increase the minor version 
number of your crate any time that the MSRV changes. So, if you release 
version 2.7.0 of your crate and that increases your MSRV from Rust 1.44 
to Rust 1.45, then a project that is stuck on 1.44 and that depends on your 
crate can use the dependency version specifier version = "2, <2.7" to keep 
the project working until it can move on to Rust 1.45. It’s important that you 
increment the minor version, not just the patch version, so that you can still 
issue critical security fixes for the previous MSRV release by doing another 
patch release if necessary.

Some projects take their MSRV support so seriously that they consider 
an MSRV change a breaking change and increment the major version num-
ber. This means that downstream projects will explicitly have to opt in to an 
MSRV change, rather than opting out—but it also means that users who do 
not have such strict MSRV requirements will not see future bug fixes with-
out updating their dependencies, which may require them to issue a break-
ing change as well. As I said, none of these solutions are without drawbacks.

Enforcing an MSRV in the Rust ecosystem today is challenging. Only 
a small subset of crates provide any MSRV guarantees, and even if your 
dependencies do, you will need to constantly monitor them to know when 
they increase their MSRV. When they do, you’ll need to do a new release 
of your crate with the restricted version bounds mentioned previously to 
make sure your MSRV doesn’t also change. This may in turn force you to 
forego security and performance updates made to your dependencies, as 
you’ll have to continue using older versions until your MSRV policy permits 
updating. And that decision also carries over to your dependents. There 
have been proposals to build MSRV checking into Cargo itself, but nothing 
workable has been stabilized as of this writing.



82   Chapter 5

Minimal Dependency Versions
When you first add a dependency, it’s not always clear what version specifier 
you should give that dependency. Programmers commonly choose the latest 
version, or just the current major version, but chances are that both of those 
choices are wrong. By “wrong,” I don’t mean that your crate won’t compile, 
but rather that making that choice may cause strife for users of your crate 
down the line. Let’s look at why each of these cases is problematic.

First, consider the case where you add a dependency on hugs = "1.7.3", 
the latest published version. Now imagine that a developer somewhere 
depends on your crate, but they also depend on some other crate, foo, that 
itself depends on hugs. Further imagine that the author of foo is really careful 
about their MSRV policy, so they depend on hugs = "1, <1.6". Here, you’ll run 
into trouble. When Cargo sees hugs = "1.7.3", it considers only versions >=1.7. 
But then it sees that foo’s dependency on hugs requires <1.6, so it gives up and 
reports that there is no version of hugs compatible with all the requirements.

N O T E  In practice, there are a number of reasons why a crate may explicitly not want a 
newer version of a dependency. The most common ones are to enforce MSRV, to meet 
enterprise auditing requirements (the newer version will contain code that hasn’t been 
audited), and to ensure reproducible builds where only the exact listed version is used.

This is unfortunate, as it could well be that your crate compiles fine 
with, say, hugs 1.5.6. Maybe it even compiles fine with any 1.X version! But 
by using the latest version number, you are telling Cargo to consider only 
versions at or beyond that minor version. Is the solution to use hugs = "1" 
instead, then? No, that’s not quite right either. It could be that your code 
truly does depend on something that was added only in hugs 1.6, so while 
1.6.2 would be fine, 1.5.6 would not be. You wouldn’t notice this if you were 
only ever compiling your crate in situations where a newer version ends up 
getting used, but if some crate in the dependency graph specifies hugs = "1, 
<1.5", your crate would not compile!

The right strategy is to list the earliest version that has all the things 
your crate depends on and to make sure that this remains the case even 
as you add new code to your crate. But how do you establish that beyond 
trawling the changelogs, or through trial and error? Your best bet is to use 
Cargo’s unstable -Zminimal-versions flag, which makes your crate use the 
minimum acceptable version for all dependencies, rather than the maxi-
mum. Then, set all your dependencies to just the latest major version num-
ber, try to compile, and add a minor version to any dependencies that don’t. 
Rinse and repeat until everything compiles fine, and you now have your 
minimum version requirements!

It’s worth noting that, like with MSRV, minimal version checking faces 
an ecosystem adoption problem. While you may have set all your version 
specifiers correctly, the projects you depend on may not have. This makes 
the Cargo minimal versions flag hard to use in practice (and is why it’s still 
unstable). If you depend on foo, and foo depends on bar with a specifier 
of bar = "1" when it actually requires bar = "1.4", Cargo will report that it 
failed to compile foo no matter how you list foo because the -Z flag tells it 
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to always prefer minimal versions. You can work around this by listing bar 
directly in your dependencies with the appropriate version requirement, 
but these workarounds can be painful to set up and maintain. You may end 
up listing a large number of dependencies that are only really pulled in 
through your transitive dependencies, and you’ll have to keep that list up to 
date as time goes on. 

N O T E  One current proposal is to present a flag that favors minimal versions for the current 
crate but maximal ones for dependencies, which seems quite promising.

Changelogs
For all but the most trivial crates, I highly recommend keeping a changelog. 
There is little more frustrating than seeing that a dependency has received 
a major version bump and then having to dig through the Git logs to figure 
out what changed and how to update your code. I recommend that you do 
not just dump your Git logs into a file named changelog, but instead keep a 
manual changelog. It is much more likely to be useful.

A simple but good format for changelogs is the Keep a Changelog for-
mat documented at https://keepachangelog.com/.

Unreleased Versions
Rust considers version numbers even when the source of a dependency is a 
directory or a Git repository. This means that semantic versioning is impor-
tant even when you have not yet published a release to crates.io; it matters 
what version is listed in your Cargo.toml between releases. The semantic ver-
sioning standard does not dictate how to handle this case, but I’ll provide a 
workflow that works decently well without being too onerous.

After you’ve published a release, immediately update the version num-
ber in your Cargo.toml to the next patch version with a suffix like -alpha.1. 
If you just released 2.0.3, make the new version 2.0.4-alpha.1. If you just 
released an alpha, increment the alpha number instead.

As you make changes to the code between releases, keep an eye out for 
additive or breaking changes. If one happens, and the corresponding ver-
sion number has not changed since the last release, increment it. For exam-
ple, if the last released version is 2.0.3, the current version is 2.0.4-alpha.2, 
and you make an additive change, make the version with the change 2.1.0-
alpha.1. If you made a breaking change, it becomes 3.0.0-alpha.1 instead. If 
the corresponding version increase has already been made, just increment 
the alpha number.

When you make a release, remove the suffix (unless you want to do a 
prerelease), then publish, and start from the top.

This process is effective because it makes two common workflows work 
much better. First, imagine that a developer depends on major version 2 
of your crate, but they need a feature that’s currently available only in Git. 
Then you commit a breaking change. If you don’t increase the major ver-
sion at the same time, their code will suddenly fail in unexpected ways, 

https://keepachangelog.com/
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either by failing to compile or as a result of weird runtime issues. If you fol-
low the procedure laid out here, they’ll instead be notified by Cargo that a 
breaking change has occurred, and they’ll have to either resolve that or pin 
a specific commit.

Next, imagine that a developer needs a feature they just contributed 
to your crate, but which isn’t part of any released version of your crate yet. 
They’ve used your crate behind a Git dependency for a while, so other 
developers on their project already have older checkouts of your crate’s 
repository. If you do not increment the major version number in Git, this 
developer has no way to communicate that their project now relies on the 
feature that was just merged. If they push their change, their fellow develop-
ers will find that the project no longer compiles, since Cargo will reuse the 
old checkout. If, on the other hand, the developer can increment the minor 
version number for the Git dependency, then Cargo will realize that the old 
checkout is outdated.

This workflow is by no means perfect. It doesn’t provide a good way to 
communicate multiple minor or major changes between releases, and you 
still need to do a bit of work to keep track of the versions. However, it does 
address two of the most common issues Rust developers run into when they 
work against Git dependencies, and even if you make multiple such changes 
between releases, this workflow will still catch many of the issues.

If you’re not too worried about small or consecutive version numbers 
in releases, you can improve this suggested workflow by simply always incre-
menting the appropriate part of the version number. Be aware, though, that 
depending on how frequently you make such changes, this may make your 
version numbers quite large!

Summary
In this chapter, we’ve looked at a number of mechanisms for configuring, 
organizing, and publishing crates, for both your own benefit and that of 
others. We’ve also gone over some common gotchas when working with 
dependencies and features in Cargo that now hopefully won’t catch you out 
in the future. In the next chapter we’ll turn to testing and dig into how you 
go beyond Rust’s simple #[test] functions that we know and love.
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T E S T I N G

In this chapter, we’ll look at the various 
ways in which you can extend Rust’s testing 

capabilities and what other kinds of testing 
you may want to add into your testing mix. Rust 

comes with a number of built-in testing facilities that 
are well covered in The Rust Programming Language, 
represented primarily by the #[test] attribute and the 
tests/ directory. These will serve you well across a wide  
range of applications and scales and are often all you need when you are 
getting started with a project. However, as the codebase develops and your 
testing needs grow more elaborate, you may need to go beyond just tag-
ging #[test] onto individual functions. 

This chapter is divided into two main sections. The first part covers 
Rust testing mechanisms, like the standard testing harness and conditional 
testing code. The second looks at other ways to evaluate the correctness of 
your Rust code, such as benchmarking, linting, and fuzzing.
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Rust Testing Mechanisms
To understand the various testing mechanisms Rust provides, you must first 
understand how Rust builds and runs tests. When you run cargo test --lib, 
the only special thing Cargo does is pass the --test flag to rustc. This flag 
tells rustc to produce a test binary that runs all the unit tests, rather than 
just compiling the crate’s library or binary. Behind the scenes, --test has 
two primary effects. First, it enables cfg(test) so that you can conditionally 
include testing code (more on that in a bit). Second, it makes the compiler 
generate a test harness: a carefully generated main function that invokes each 
#[test] function in your program when it’s run.

The Test Harness
The compiler generates the test harness main function through a mix of 
procedural macros, which we’ll discuss in greater depth in Chapter 7, and 
a light sprinkling of magic. Essentially, the harness transforms every func-
tion annotated by #[test] into a test descriptor—this is the procedural macro 
part. It then exposes the path of each of the descriptors to the generated 
main function—this is the magic part. The descriptor includes information 
like the test’s name, any additional options it has set (like #[should_panic]), 
and so on. At its core, the test harness iterates over the tests in the crate, 
runs them, captures their results, and prints the results. So, it also includes 
logic to parse command line arguments (for things like --test-threads=1), 
capture test output, run the listed tests in parallel, and collect test results.

As of this writing, Rust developers are working on making the magic 
part of test harness generation a publicly available API so that developers 
can build their own test harnesses. This work is still at the experimental 
stage, but the proposal aligns fairly closely with the model as it exists today. 
Part of the magic that needs to be figured out is how to ensure that #[test] 
functions are available to the generated main function even if they are inside 
private submodules.

Integration tests (the tests in tests/) follow the same process as unit 
tests, with the one exception that they are each compiled as their own 
separate crate, meaning they can access only the main crate’s public inter-
face and are run against the main crate compiled without #[cfg(test)]. A 
test harness is generated for each file in tests/. Test harnesses are not gen-
erated for files in subdirectories under tests/ to allow you to have shared 
 submodules for your tests.

N O T E  If you explicitly want a test harness for a file in a subdirectory, you can opt in to that 
by calling the file main.rs.

Rust does not require that you use the default test harness. You can 
instead opt out of it and implement your own main method that represents 
the test runner by setting harness = false for a given integration test in 
Cargo.toml, as shown in Listing 6-1. The main method that you define will 
then be invoked to run the test.
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[[test]]
name = "custom"
path = "tests/custom.rs"
harness = false

Listing 6-1: Opting out of the standard test harness

Without the test harness, none of the magic around #[test] happens. 
Instead, you’re expected to write your own main function to run the testing 
code you want to execute. Essentially, you’re writing a normal Rust binary 
that just happens to be run by cargo test. That binary is responsible for 
handling all the things that the default harness normally does (if you want 
to support them), such as command line flags. The harness property is set 
separately for each integration test, so you can have one test file that uses 
the standard harness and one that does not.

A RGUMEN T S TO T HE DEFAULT T ES T H A R NESS

The default test harness supports a number of command line arguments to 
configure how the tests are run . These aren’t passed to cargo test directly 
but rather to the test binary that Cargo compiles and runs for you when you 
run cargo test . To access that set of flags, pass -- to cargo test, followed by 
the arguments to the test binary . For example, to see the help text for the test 
binary, you’d run cargo test -- --help .

A number of handy configuration options are available through these com-
mand line arguments . The --nocapture flag disables the output capturing that 
normally happens when you run Rust tests . This is useful if you want to observe 
a test’s output in real time rather than all at once after the test has failed . You 
can use the --test-threads option to limit how many tests run concurrently, 
which is helpful if you have a test that hangs or segfaults and you want to figure 
out which one it is by running the tests sequentially . There’s also a --skip option 
for skipping tests that match a certain pattern, --ignored to run tests that would 
normally be ignored (such as those that require an external program to be run-
ning), and --list to just list all the available tests .

Keep in mind that these arguments are all implemented by the default test 
harness, so if you disable it (with harness = false), you’ll have to implement the 
ones you need yourself in your main function!

Integration tests without a harness are primarily useful for bench-
marks, as we’ll see later, but they also come in handy when you want to run 
tests that don’t fit the standard “one function, one test” model. For exam-
ple, you’ll frequently see harnessless tests used with fuzzers, model check-
ers, and tests that require a custom global setup (like under WebAssembly 
or when working with custom targets).
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#[cfg(test)]
When Rust builds code for testing, it sets the compiler configuration flag 
test, which you can then use with conditional compilation to have code 
that is compiled out unless it is specifically being tested. On the surface, 
this may seem odd: don’t you want to test exactly the same code that’s going 
into production? You do, but having code exclusively available when testing 
allows you to write better, more thorough tests, in a few ways.

MOCKING

When writing tests, you often want tight control over the code you’re testing as 
well as any other types that your code may interact with . For example, if you 
are testing a network client, you probably do not want to run your unit tests 
over a real network but instead want to directly control what bytes are emitted 
by the “network” and when . Or, if you’re testing a data structure, you want your 
test to use types that allow you to control what each method returns on each 
invocation . You may also want to gather metrics such as how often a given 
method was called or whether a given byte sequence was emitted .

These “fake” types and implementations are known as mocks, and they 
are a key feature of any extensive unit test suite . While you can often do the 
work needed to get this kind of control manually, it’s nicer to have a library take 
care of most of the nitty-gritty details for you . This is where automated mock-
ing comes into play . A mocking library will have facilities for generating types 
(including functions) with particular properties or signatures, as well as mecha-
nisms to control and introspect those generated items during a test execution .

Mocking in Rust generally happens through generics—as long as your 
program, data structure, framework, or tool is generic over anything you might 
want to mock (or takes a trait object), you can use a mocking library to gener-
ate conforming types that will instantiate those generic parameters . You then 
write your unit tests by instantiating your generic constructs with the generated 
mock types, and you’re off to the races!

In situations where generics are inconvenient or inappropriate, such as 
if you want to avoid making a particular aspect of your type generic to users, 
you can instead encapsulate the state and behavior you want to mock in a 
dedicated struct . You would then generate a mocked version of that struct and 
its methods and use conditional compilation to use either the real or mocked 
implementation depending on cfg(test) or a test-only feature like cfg(feature 
= "test_mock_foo") .

At the moment, there isn’t a single mocking library, or even a single mock-
ing approach, that has emerged as the One True Answer in the Rust community . 
The most extensive and thorough mocking library I know of is the mockall crate, 
but that is still under active development, and there are many other contenders .
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Test-Only APIs

First, having test-only code allows you to expose additional methods, fields, 
and types to your (unit) tests so the tests can check not only that the public 
API behaves correctly but also that the internal state is correct. For example, 
consider the HashMap type from hashbrown, the crate that implements the 
standard library HashMap. The HashMap type is really just a wrapper around 
a RawTable type, which is what implements most of the hash table logic. 
Suppose that after doing a HashMap::insert on an empty map, you want to 
check that a single bucket in the map is nonempty, as shown in Listing 6-2.

#[test]
fn insert_just_one() {
  let mut m = HashMap::new();
  m.insert(42, ());
  let full = m.table.buckets.iter().filter(Bucket::is_full).count();
  assert_eq!(full, 1);
}

Listing 6-2: A test that accesses inaccessible internal state and thus does not compile

This code will not compile as written, because while the test code can 
access the private table field of HashMap, it cannot access the also private 
buckets field of RawTable, as RawTable lives in a different module. We could fix 
this by making the buckets field visibility pub(crate), but we really don’t want 
HashMap to be able to touch buckets in general, as it could accidentally corrupt 
the internal state of the RawTable. Even making buckets available as read-only 
could be problematic, as new code in HashMap may then start depending on 
the internal state of RawTable, making future modifications more difficult. 

The solution is to use #[cfg(test)]. We can add a method to RawTable 
that allows access to buckets only while testing, as shown in Listing 6-3, 
and thereby avoid adding footguns for the rest of the code. The code from 
Listing 6-2 can then be updated to call buckets() instead of accessing the 
private buckets field.

impl RawTable {
  #[cfg(test)]
  pub(crate) fn buckets(&self) -> &[Bucket] {
    &self.buckets
  }
}

Listing 6-3: Using #[cfg(test)] to make internal state accessible in the testing context

Bookkeeping for Test Assertions

The second benefit of having code that exists only during testing is that 
you can augment the program to perform additional runtime bookkeep-
ing that can then be inspected by tests. For example, imagine you’re writ-
ing your own version of the BufWriter type from the standard library. When 
testing it, you want to make sure that BufWriter does not issue system calls 
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unnecessarily. The most obvious way to do so is to have the BufWriter keep 
track of how many times it has invoked write on the underlying Write. 
However, in production this information isn’t important, and keeping 
track of it introduces (marginal) performance and memory overhead. With 
#[cfg(test)], you can have the bookkeeping happen only when testing, as 
shown in Listing 6-4.

struct BufWriter<T> {
  #[cfg(test)]
  write_through: usize,
  // other fields...
}

impl<T: Write> Write for BufWriter<T> {
  fn write(&mut self, buf: &[u8]) -> Result<usize> {
    // ...
    if self.full() {
      #[cfg(test)]
      self.write_through += 1;
      let n = self.inner.write(&self.buffer[..])?;
    // ...
  }
}

Listing 6-4: Using #[cfg(test)] to limit bookkeeping to the testing context

Keep in mind that test is set only for the crate that is being compiled as 
a test. For unit tests, this is the crate being tested, as you would expect. For 
integration tests, however, it is the integration test binary being compiled as 
a test—the crate you are testing is just compiled as a library and so will not 
have test set.

Doctests
Rust code snippets in documentation comments are automatically run as 
test cases. These are commonly referred to as doctests. Because doctests 
appear in the public documentation of your crate, and users are likely to 
mimic what they contain, they are run as integration tests. This means that 
the doctests don’t have access to private fields and methods, and test is not 
set on the main crate’s code. Each doctest is compiled as its own dedicated 
crate and is run in isolation, just as if the user had copy-pasted the doctest 
into their own program.

Behind the scenes, the compiler performs some preprocessing on 
 doctests to make them more concise. Most importantly, it automatically 
adds an fn main around your code. This allows doctests to focus only on the 
important bits that the user is likely to care about, like the parts that actu-
ally use types and methods from your library, without including unneces-
sary boilerplate.

You can opt out of this auto-wrapping by defining your own fn main in 
the doctest. You may want to do this, for example, if you want to write an 
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asynchronous main function using something like #[tokio::main] async fn 
main, or if you want to add additional modules to the doctest. 

To use the ? operator in your doctest, you don’t normally have to use a 
custom main function as rustdoc includes some heuristics to set the return 
type to Result<(), impl Debug> if your code looks like it makes use of ? (for 
example, if it ends with Ok(())). If type inference gives you a hard time 
about the error type for the function, you can disambiguate it by changing 
the last line of the doctest to be explicitly typed, like this: Ok::<(), T>(()).

Doctests have a number of additional features that come in handy as 
you write documentation for more complex interfaces. The first is the abil-
ity to hide individual lines. If you prefix a line of a doctest with a #, that line 
is included when the doctest is compiled and run, but it is not included in 
the code snippet generated in the documentation. This lets you easily hide 
details that are not important to the current example, such as implement-
ing traits for dummy types or generating values. It is also useful if you wish 
to present a sequence of examples without showing the same leading code 
each time. Listing 6-5 gives an example of what a doctest with hidden lines 
might look like.

/// Completely frobnifies a number through I/O.
///
/// In this first example we hide the value generation.
/// ```
/// # let unfrobnified_number = 0;
/// # let already_frobnified = 1;
/// assert!(frobnify(unfrobnified_number).is_ok());
/// assert!(frobnify(already_frobnified).is_err());
/// ```
///
/// Here's an example that uses ? on multiple types
/// and thus needs to declare the concrete error type,
/// but we don't want to distract the user with that.
/// We also hide the use that brings the function into scope.
/// ```
/// # use mylib::frobnify;
/// frobnify("0".parse()?)?;
/// # Ok::<(), anyhow::Error>(())
/// ```
///
/// You could even replace an entire block of code completely,
/// though use this _very_ sparingly:
/// ```
/// # /*
/// let i = ...;
/// # */
/// # let i = 42;
/// frobnify(i)?;
/// ```
fn frobnify(i: usize) -> std::io::Result<()> {

Listing 6-5: Hiding lines in a doctest with #
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N O T E  Use this feature with care; it can be frustrating to users if they copy-paste an example 
and then it doesn’t work because of required steps that you’ve hidden.

Much like #[test] functions, doctests also support attributes that 
modify how the doctest is run. These attributes go immediately after the 
triple-backtick used to denote a code block, and multiple attributes can be 
separated by commas. 

Like with test functions, you can specify the should_panic attribute to 
indicate that the code in a particular doctest should panic when run, or 
ignore to check the code segment only if cargo test is run with the --ignored 
flag. You can also use the no_run attribute to indicate that a given doctest 
should compile but should not be run.

The attribute compile_fail tells rustdoc that the code in the documenta-
tion example should not compile. This indicates to the user that a particu-
lar use is not possible and serves as a useful test to remind you to update 
the documentation should the relevant aspect of your library change. You 
can also use this attribute to check that certain static properties hold for 
your types. Listing 6-6 shows an example of how you can use compile_fail to 
check that a given type does not implement Send, which may be necessary to 
uphold safety guarantees in unsafe code.

```compile_fail
# struct MyNonSendType(std::rc::Rc<()>);
fn is_send<T: Send>() {}
is_send::<MyNonSendType>();
```

Listing 6-6: Testing that code fails to compile with compile_fail

compile_fail is a fairly crude tool in that it gives no indication of why the 
code does not compile. For example, if code doesn’t compile because of a 
missing semicolon, a compile_fail test will appear to have been successful. 
For that reason, you’ll usually want to add the attribute only after you have 
made sure that the test indeed fails to compile with the expected error. 
If you need more fine-grained tests for compilation errors, such as when 
developing macros, take a look at the trybuild crate.

Additional Testing Tools
There’s a lot more to testing than just running test functions and seeing that 
they produce the expected result. A thorough survey of testing techniques, 
methodologies, and tools is outside the scope of this book, but there are 
some key Rust-specific pieces that you should know about as you expand 
your testing repertoire.

Linting
You may not consider a linter’s checks to be tests, but in Rust they often 
can be. The Rust linter clippy categorizes a number of its lints as correctness 
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lints. These lints catch code patterns that compile but are almost cer-
tainly bugs. Some examples are a = b; b = a, which fails to swap a and b; 
std::mem::forget(t), where t is a reference; and for x in y.next(), which will 
iterate only over the first element in y. If you are not running clippy as part 
of your CI pipeline already, you probably should be.

Clippy comes with a number of other lints that, while usually helpful, 
may be more opinionated than you’d prefer. For example, the type_complexity 
lint, which is on by default, issues a warning if you use a particularly involved 
type in your program, like Rc<Vec<Vec<Box<(u32, u32, u32, u32)>>>>. While that 
warning encourages you to write code that is easier to read, you may find it too 
pedantic to be broadly useful. If some part of your code erroneously triggers 
a particular lint, or you just want to allow a specific instance of it, you can opt 
out of the lint just for that piece of code with #[allow(clippy::name_of_lint)].

The Rust compiler also comes with its own set of lints in the form of 
warnings, though these are usually more directed toward writing idiomatic 
code than checking for correctness. Instead, correctness lints in the com-
piler are simply treated as errors (take a look at rustc -W help for a list).

N O T E  Not all compiler warnings are enabled by default. Those disabled by default are usu-
ally still being refined, or are more about style than content. A good example of this is 
the “idiomatic Rust 2018 edition” lint, which you can enable with #![warn(rust_2018 
_idioms)]. When this lint is enabled, the compiler will tell you if you’re failing to take 
advantage of changes brought by the Rust 2018 edition. Some other lints that you may 
want to get into the habit of enabling when you start a new project are missing_docs 
and missing_debug_implementations, which warn you if you’ve forgotten to document 
any public items in your crate or add Debug implementations for any public types, 
respectively.

Test Generation
Writing a good test suite is a lot of work. And even when you do that work, 
the tests you write test only the particular set of behaviors you were con-
sidering at the time you wrote them. Luckily, you can take advantage of 
a number of test generation techniques to develop better and more thor-
ough tests. These generate input for you to use to check your application’s 
correctness. Many such tools exist, each with their own strengths and 
weaknesses, so here I’ll cover only the main strategies used by these tools: 
fuzzing and property testing.

Fuzzing

Entire books have been written about fuzzing, but at a high level the idea is 
simple: generate random inputs to your program and see if it crashes. If the 
program crashes, that’s a bug. For example, if you’re writing a URL parsing 
library, you can fuzz-test your program by systematically generating random 
strings and throwing them at the parsing function until it panics. Done 
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naively, this would take a while to yield results: if the fuzzer starts with a, 
then b, then c, and so on, it will take it a long time to generate a tricky URL 
like http://[:]. In practice, modern fuzzers use code coverage metrics to 
explore different paths in your code, which lets them reach higher degrees 
of coverage faster than if the inputs were truly chosen at random.

Fuzzers are great at finding strange corner cases that your code doesn’t 
handle correctly. They require little setup on your part: you just point the 
fuzzer at a function that takes a “fuzzable” input, and off it goes. For exam-
ple, Listing 6-7 shows an example of how you might fuzz-test a URL parser.

libfuzzer_sys::fuzz_target!(|data: &[u8]| {
  if let Ok(s) = std::str::from_utf8(data) {
      let _ = url::Url::parse(s);
  }
});

Listing 6-7: Fuzzing a URL parser with libfuzzer

The fuzzer will generate semi-random inputs to the closure, and any 
that form valid UTF-8 strings will be passed to the parser. Notice that the 
code here doesn’t check whether the parsing succeeds or fails—instead, it’s 
looking for cases where the parser panics or otherwise crashes due to inter-
nal invariants that are violated.

The fuzzer keeps running until you terminate it, so most fuzzing tools 
come with a built-in mechanism to stop after a certain number of test cases 
have been explored. If your input isn’t a trivially fuzzable type—something 
like a hash table—you can usually use a crate like arbitrary to turn the byte 
string that the fuzzer generates into a more complex Rust type. It feels like 
magic, but under the hood it’s actually implemented in a very straightfor-
ward fashion. The crate defines an Arbitrary trait with a single method, 
arbitrary, that constructs the implementing type from a source of random 
bytes. Primitive types like u32 or bool read the necessary number of bytes 
from that input to construct a valid instance of themselves, whereas more 
complex types like HashMap or BTreeSet produce one number from the input 
to dictate their length and then call Arbitrary that number of times on their 
inner types. There’s even an attribute, #[derive(Arbitrary)], that implements 
Arbitrary by just calling arbitrary on each contained type! To explore fuzz-
ing further, I recommend starting with cargo-fuzz.

Property-Based Testing

Sometimes you want to check not only that your program doesn’t crash but 
also that it does what it’s expected to do. It’s great that your add function 
didn’t panic, but if it tells you that the result of add(1, 4) is 68, it’s probably 
still wrong. This is where property-based testing comes into play; you describe 
a number of properties your code should uphold, and then the property 
testing framework generates inputs and checks that those properties 
indeed hold. 
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A common way to use property-based testing is to first write a simple 
but naive version of the code you want to test that you are confident is cor-
rect. Then, for a given input, you give that input to both the code you want 
to test and the simplified but naive version. If the result or output of the 
two implementations is the same, your code is good—that is the correct-
ness property you’re looking for—but if it’s not, you’ve likely found a bug. 
You can also use property-based testing to check for properties not directly 
related to correctness, such as whether operations take strictly less time for 
one implementation than another. The common principle is that you want 
any difference in outcome between the real and test versions to be informa-
tive and actionable so that every failure allows you to make improvements. 
The naive implementation might be one from the standard library that 
you’re trying to replace or augment (like std::collections::VecDeque), or it 
might be a simpler version of an algorithm that you’re trying optimize (like 
naive versus optimized matrix multiplication).

If this approach of generating inputs until some condition is met 
sounds a lot like fuzzing, that’s because it is—smarter people than I have 
argued that fuzzing is “ just” property-based testing where the property 
you’re testing for is “it doesn’t crash.”

One downside of property-based testing is that it relies more heavily on 
the provided descriptions of the inputs. Whereas fuzzing will keep trying 
all possible inputs, property testing tends to be guided by developer anno-
tations like “a number between 0 and 64” or “a string that contains three 
commas.” This allows property testing to more quickly reach cases that fuzz-
ers may take a long time to encounter randomly, but it does require manual 
work and may miss important but niche buggy inputs. As fuzzers and prop-
erty testers grow closer, however, fuzzers are starting to gain this kind of 
constraint-based searching capability as well.

If you’re curious about property-based test generation, I recommend 
starting with the proptest crate.

T ES T ING SEQUENCES OF OPER AT IONS

Since fuzzers and property testers allow you to generate arbitrary Rust types, 
you aren’t limited to testing a single function call in your crate . For example, say 
you want to test that some type Foo behaves correctly if you perform a particu-
lar sequence of operations on it . You could define an enum Operation that lists 
operations, and make your test function take a Vec<Operation> . Then you could 
instantiate a Foo and perform each operation on that Foo, one after the other . 
Most testers have support for minimizing inputs, so they will even search for 
the smallest sequence of operations that still violates a property if a property-
violating input is found!
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Test Augmentation
Let’s say you have a magnificent test suite all set up, and your code passes 
all the tests. It’s glorious. But then, one day, one of the normally reliable 
tests inexplicably fails or crashes with a segmentation fault. There are two 
common reasons for these kinds of nondeterministic test failures: race con-
ditions, where your test might fail only if two operations occur on different 
threads in a particular order, and undefined behavior in unsafe code, such 
as if some unsafe code reads a particular value out of uninitialized memory.

Catching these kinds of bugs with normal tests can be difficult—often 
you don’t have sufficient low-level control over thread scheduling, memory 
layout and content, or other random-ish system factors to write a reliable 
test. You could run each test many times in a loop, but even that may not 
catch the error if the bad case is sufficiently rare or unlikely. Luckily, there 
are tools that can help augment your tests to make catching these kinds of 
bugs much easier. 

The first of these is the amazing tool Miri, an interpreter for Rust’s 
mid-level intermediate representation (MIR). MIR is an internal, simplified 
representation of Rust that helps the compiler find optimizations and 
check properties without having to consider all of the syntax sugar of Rust 
itself. Running your tests through Miri is as simple as running cargo miri 
test. Miri interprets your code rather than compiling and running it like a 
normal binary, which makes the tests run a decent amount slower. But in 
return, Miri can keep track of the entire program state as each line of your 
code executes. This allows Miri to detect and report if your program ever 
exhibits certain types of undefined behavior, such as uninitialized memory 
reads, uses of values after they’ve been dropped, or out-of-bounds pointer 
accesses. Rather than having these operations yield strange program behav-
iors that may only sometimes result in observable test failures (like crashes), 
Miri detects them when they happen and tells you immediately. 

For example, consider the very unsound code in Listing 6-8, which cre-
ates two exclusive references to a value.

let mut x = 42;
let x: *mut i32 = &mut x;
let (x1, x2) = unsafe { (&mut *x, &mut *x) };
println!("{} {}", x1, x2);

Listing 6-8: Wildly unsafe code that Miri detects is incorrect

At the time of writing, if you run this code through Miri, you get an 
error that points out exactly what’s wrong:

error: Undefined Behavior: trying to reborrow for Unique at alloc1383, but 
parent tag <2772> does not have an appropriate item in the borrow stack
 --> src/main.rs:4:6
  |
4 | let (x1, x2) = unsafe { (&mut *x, &mut *x) };
  |      ^^ trying to reborrow for Unique at alloc1383, but parent tag <2772> 
does not have an appropriate item in the borrow stack
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N O T E  Miri is still under development, and its error messages aren’t always the easiest to 
understand. This is a problem that’s being actively worked on, so by the time you read 
this, the error output may have already gotten much better!

Another tool worth looking at is Loom, a clever library that tries to 
ensure your tests are run with every relevant interleaving of concurrent 
operations. At a high level, Loom keeps track of all cross-thread synchro-
nization points and runs your tests over and over, adjusting the order in 
which threads proceed from those synchronization points each time. So, if 
thread A and thread B both take the same Mutex, Loom will ensure that the 
test runs once with A taking it first and once with B taking it first. Loom 
also keeps track of atomic accesses, memory orderings, and accesses to 
UnsafeCell (which we’ll discuss in Chapter 9) and checks that threads do not 
access them inappropriately. If a test fails, Loom can give you an exact run-
down of which threads executed in what order so you can determine how 
the crash happened.

Performance Testing
Writing performance tests is difficult because it is often hard to accurately 
model a workload that reflects real-world usage of your crate. But having 
such tests is important; if your code suddenly runs 100 times slower, that 
really should be considered a bug, yet without a performance test you may 
not spot the regression. If your code runs 100 times faster, that might also 
indicate that something is off. Both of these are good reasons to have auto-
mated performance tests as part of your CI—if performance changes drasti-
cally in either direction, you should know about it.

Unlike with functional testing, performance tests do not have a com-
mon, well-defined output. A functional test will either succeed or fail, 
whereas a performance test may give you a throughput number, a latency 
profile, a number of processed samples, or any other metric that might 
be relevant to the application in question. Also, a performance test may 
require running a function in a loop a few hundred thousand times, or it 
might take hours running across a distributed network of multicore boxes. 
For that reason, it is difficult to speak about how to write performance tests 
in a general sense. Instead, in this section, we’ll look at some of the issues 
you may encounter when writing performance tests in Rust and how to miti-
gate them. Three particularly common pitfalls that are often overlooked 
are performance variance, compiler optimizations, and I/O overhead. Let’s 
explore each of these in turn.

Performance Variance

Performance can vary for a huge variety of reasons, and many factors affect 
how fast a particular sequence of machine instructions run. Some are obvious, 
like the CPU and memory clock speed, or how loaded the machine otherwise 
is, but many are much more subtle. For example, your kernel version may 
change paging performance, the length of your username might change the 
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layout of memory, and the temperature in the room might cause the CPU to 
clock down. Ultimately, it is highly unlikely that if you run a benchmark twice, 
you’ll get the same result. In fact, you may observe significant variance, even if 
you are using the same hardware. Or, viewed from another perspective, your 
code may have gotten slower or faster, but the effect may be invisible due to 
differences in the benchmarking environment.

There are no perfect ways to eliminate all variance in your perfor-
mance results, unless you happen to be able to run benchmarks repeat-
edly on a highly diverse fleet of machines. Even so, it’s important to try to 
handle this measurement variance as best we can to extract a signal from 
the noisy measurements benchmarks give us. In practice, our best friend in 
combating variance is to run each benchmark many times and then look 
at the distribution of measurements rather than just a single one. Rust has 
tools that can help with this. For example, rather than ask “How long did 
this function take to run on average?” crates like hdrhistogram enable us to 
look at statistics like “What range of runtime covers 95% of the samples 
we observed?” To be even more rigorous, we can use techniques like null 
hypothesis testing from statistics to build some confidence that a measured 
difference indeed corresponds to a true change and is not just noise.

A lecture on statistical hypothesis testing is beyond the scope of this 
book, but luckily much of this work has already been done by others. The 
criterion crate, for instance, does all of this and more for you. All you 
have to do is give it a function that it can call to run one iteration of your 
benchmark, and it will run it the appropriate number of times to be fairly 
sure that the result is reliable. It then produces a benchmark report, which 
includes a summary of the results, analysis of outliers, and even graphical 
representations of trends over time. Of course, it can’t eliminate the effects 
of just testing on a particular configuration of hardware, but it at least cat-
egorizes the noise that is measurable across executions.

Compiler Optimizations

Compilers these days are really clever. They eliminate dead code, compute 
complex expressions at compile time, unroll loops, and perform other dark 
magic to squeeze every drop of performance out of our code. Normally this 
is great, but when we’re trying to measure how fast a particular piece of 
code is, the compiler’s smartness can give us invalid results. For example, 
take the code to benchmark Vec::push in Listing 6-9.

let mut vs = Vec::with_capacity(4);
let start = std::time::Instant::now();
for i in 0..4 {
  vs.push(i);
}
println!("took {:?}", start.elapsed());

Listing 6-9: A suspiciously fast performance benchmark
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If you were to look at the assembly output of this code compiled in 
release mode using something like the excellent godbolt.org or cargo-asm, 
you’d immediately notice that something was wrong: the calls to Vec::with 
_capacity and Vec::push, and indeed the whole for loop, are nowhere to be 
seen. They have been optimized out completely. The compiler realized 
that nothing in the code actually required the vector operations to be per-
formed and eliminated them as dead code. Of course, the compiler is com-
pletely within its rights to do so, but for benchmarking purposes, this is not 
particularly helpful.

To avoid these kinds of optimizations for benchmarking, the standard 
library provides std::hint::black_box. This function has been the topic of 
much debate and confusion and is still pending stabilization at the time of 
writing, but is so useful it’s worth discussing here nonetheless. At its core, 
it’s simply an identity function (one that takes x and returns x) that tells the 
compiler to assume that the argument to the function is used in arbitrary 
(legal) ways. It does not prevent the compiler from applying optimizations 
to the input argument, nor does it prevent the compiler from optimizing 
how the return value is used. Instead, it encourages the compiler to actually 
compute the argument to the function (under the assumption that it will 
be used) and to store that result somewhere accessible to the CPU such that 
black_box could be called with the computed value. The compiler is free to, 
say, compute the input argument at compile time, but it should still inject 
the result into the program.

This function is all we need for many, though admittedly not all, of our 
benchmarking needs. For example, we can annotate Listing 6-9 so that the 
vector accesses are no longer optimized out, as shown in Listing 6-10.

let mut vs = Vec::with_capacity(4);
let start = std::time::Instant::now();
for i in 0..4 {
  black_box(vs.as_ptr());
  vs.push(i); 
  black_box(vs.as_ptr());
}
println!("took {:?}", start.elapsed());

Listing 6-10: A corrected version of Listing 6-9

We’ve told the compiler to assume that vs is used in arbitrary ways 
on each iteration of the loop, both before and after the calls to push. This 
forces the compiler to perform each push in order, without merging or oth-
erwise optimizing consecutive calls, since it has to assume that “arbitrary 
stuff that cannot be optimized out” (that’s the black_box part) may happen 
to vs between each call.

Note that we used vs.as_ptr() and not, say, &vs. That’s because of the 
caveat that the compiler should assume black_box can perform any legal opera-
tion on its argument. It is not legal to mutate the Vec through a shared refer-
ence, so if we used black_box(&vs), the compiler might notice that vs will not 
change between iterations of the loop and implement optimizations based on 
that observation!



100   Chapter 6

I/O Overhead Measurement

When writing benchmarks, it’s easy to accidentally measure the wrong 
thing. For example, we often want to get information in real time about 
how far along the benchmark is. To do that, we might write code like that in 
Listing 6-11, intended to measure how fast my_function runs:

let start = std::time::Instant::now();
for i in 0..1_000_000 {
  println!("iteration {}", i);
  my_function();
}
println!("took {:?}", start.elapsed());

Listing 6-11: What are we really benchmarking here?

This may look like it achieves the goal, but in reality, it does not actu-
ally measure how fast my_function is. Instead, this loop is most likely to tell 
us how long it takes to print a million numbers. The println! in the body of 
the loop does a lot of work behind the scenes: it turns a binary integer into 
decimal digits for printing, locks standard output, writes out a sequence 
of UTF-8 code points using at least one system call, and then releases the 
standard output lock. Not only that, but the system call might block if your 
terminal is slow to print out the input it receives. That’s a lot of cycles! And 
the time it takes to call my_function might pale in comparison.

A similar thing happens when your benchmark uses random numbers. 
If you run my_function(rand::random()) in a loop, you may well be mostly mea-
suring the time it takes to generate a million random numbers. The story is 
the same for getting the current time, reading a configuration file, or start-
ing a new thread—these things all take a long time, relatively speaking, and 
may end up overshadowing the time you actually wanted to measure.

Luckily, this particular issue is often easy to work around once you are 
aware of it. Make sure that the body of your benchmarking loop contains 
almost nothing but the particular code you want to measure. All other code 
should run either before the benchmark begins or outside of the measured 
part of the benchmark. If you’re using criterion, take a look at the different 
timing loops it provides—they’re all there to cater to benchmarking cases 
that require different measurement strategies!

Summary
In this chapter, we explored the built-in testing capabilities that Rust 
offers in great detail. We also looked at a number of testing facilities and 
techniques that are useful when testing Rust code. This is the last chapter 
that focuses on higher-level aspects of intermediate Rust use in this book. 
Starting with the next chapter on declarative and procedural macros, we 
will be focusing much more on Rust code. See you on the next page!



7
M A C R O S

Macros are, in essence, a tool for making 
the compiler write code for you. You give 

the compiler a formula for generating code 
given some input parameters, and the compiler 

replaces every invocation of the macro with the result 
of running through the formula. You can think of 
macros as automatic code substitution where you get 
to define the rules for the substitution.

Rust’s macros come in many different shapes and sizes to make it easy 
to implement many different forms of code generation. The two primary 
types are declarative macros and procedural macros, and we will explore both 
of them in this chapter. We’ll also look at some of the ways macros can come 
in handy in your everyday coding and some of the pitfalls that arise with 
more advanced use.  

Programmers coming from C-based languages may be used to the 
unholy land of C and C++ where you can use #define to change each true to 
false, or to remove all occurrences of the else keyword. If that’s the case for 
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you, you’ll need to disassociate macros from a feeling of doing something 
“bad.” Macros in Rust are far from the Wild West of C macros. They follow 
(mostly) well-defined rules and are fairly misuse-resistant.

Declarative Macros
Declarative macros are those defined using the macro_rules! syntax, which 
lets you conveniently define function-like macros without having to resort to 
writing a dedicated crate for the purpose (as you do with procedural macros). 
Once you’ve defined a declarative macro, you can invoke it using the name 
of the macro followed by an exclamation mark. I like to think of this kind 
of macro as a sort of compiler-assisted search and replace: it does the job 
for many regular, well-structured transformation tasks, and for eliminating 
repetitive boilerplate. In your experience with Rust up until this point, most 
of the macros you have recognized as macros are likely to have been declara-
tive macros. Note, however, that not all function-like macros are declarative 
macros; macro_rules! itself is one example of this, and format_args! is another. 
The ! suffix merely indicates to the compiler that the macro invocation will 
be replaced with different source code at compile time.

N O T E  Since Rust’s parser specifically recognizes and parses macro invocations annotated 
with !, you can use them only in places where the parser allows them. They work in 
most places you’d expect, like in expression position or in an impl block, but not every-
where. For example, you cannot (at the time of writing) invoke a function-like macro 
where an identifier or match arm is expected.

It may not be immediately obvious why declarative macros are called 
declarative. After all, don’t you “declare” everything in your program? In 
this context, declarative refers to the fact that you don’t say how the macro’s 
inputs should be translated into the output, just that you want the output to 
look like A when the input is B. You declare that it shall be so, and the com-
piler figures out all the parsing rewiring that has to happen to make your 
declaration reality. This makes declarative macros concise and expressive, 
though it also has a tendency to make them rather cryptic since you have a 
limited language with which to express your declarations.

When to Use Them
Declarative macros are primarily useful when you find yourself writing the 
same code over and over, and you’d like to, well, not do that. They’re best 
suited for fairly mechanical replacements—if you’re aiming to do fancy 
code transformations or lots of code generation, procedural macros are 
likely a better fit.

I most frequently use declarative macros in cases where I find myself 
writing repetitive and structurally similar code, such as in tests and trait 
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implementations. For tests, I often want to run the same test multiple times 
but with slightly different configurations. I might have something like what 
is shown in Listing 7-1.

fn test_inner<T>(init: T, frobnify: bool) { ... }
#[test]
fn test_1u8_frobnified() {
  test_inner(1u8, true);
}
// ...
#[test]
fn test_1i128_not_frobnified() {
  test_inner(1i128, false);
}

Listing 7-1: Repetitive testing code

While this works, it’s too verbose, too repetitive, and too prone to man-
ual error. With macros we can do much better, as shown in Listing 7-2.

macro_rules! test_battery {
  ($($t:ty as $name:ident),*)) => {
    $(
      mod $name {
        #[test]
        fn frobnified() { test_inner::<$t>(1, true) }
        #[test]
        fn unfrobnified() { test_inner::<$t>(1, false) }
      }
    )*
  }
}
test_battery! {
  u8 as u8_tests,
  // ...
  i128 as i128_tests
);

Listing 7-2: Making a macro repeat for you

This macro expands each comma-separated directive into its own mod-
ule that then contains two tests, one that calls test_inner with true, and one 
with false. While the macro definition isn’t trivial, it makes adding more 
tests much easier. Each type is one line in the test_battery! invocation, and 
the macro will take care of generating tests for both true and false argu-
ments. We could also have it generate tests for different values for init. 
We’ve now significantly reduced the likelihood that we’ll forget to test a 
 particular configuration!

The story for trait implementations is similar. If you define your own 
trait, you’ll often want to implement that trait for a number of types in the 
standard library, even if those implementations are trivial. Let’s imagine 
you invented the Clone trait and want to implement it for all the Copy types 
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in the standard library. Instead of manually writing an implementation for 
each one, you can use a macro like the one in Listing 7-3.

macro_rules! clone_from_copy {
  ($($t:ty),*) => {
    $(impl Clone for $t {
      fn clone(&self) -> Self { *self }
    })*
  }
}
clone_from_copy![bool, f32, f64, u8, i8, /* ... */];

Listing 7-3: Using a macro to implement a trait for many similar types in one fell swoop

Here, we generate an implementation of Clone for each provided type 
whose body just uses * to copy out of &self. You may wonder why we don’t 
add a blanket implementation of Clone for T where T: Copy. We could do 
that, but a big reason not to is that it would force types in other crates to 
also use that same implementation of Clone for their own types that happen 
to be Copy. An experimental compiler feature called specialization could offer 
a workaround, but at the time of writing the stabilization of that feature 
is still some way off. So, for the time being, we’re better off enumerating 
the types specifically. This pattern also extends beyond simple forwarding 
implementations: for example, you could easily alter the code in Listing 7-3 
to implement an AddOne trait to all integer types!

N O T E  If you ever find yourself wondering if you should use generics or a declarative macro, 
you should use generics. Generics are generally more ergonomic than macros and 
integrate much better with other constructs in the language. Consider this rule of 
thumb: if your code changes based on type, use generics; otherwise, use macros.

How They Work
Every programming language has a grammar that dictates how the indi-
vidual characters that make up the source code can be turned into tokens. 
Tokens are the lowest-level building blocks of a language, such as numbers, 
punctuation characters, string and character literals, and identifiers; at 
this level, there’s no distinction between language keywords and variable 
names. For example, the text (value + 4) would be represented by the five-
token sequence (, value, +, 4, ) in Rust-like grammar. The process of turning 
text into tokens also provides a layer of abstraction between the rest of the 
compiler and the gnarly low-level details of parsing text. For example, in 
the token representation, there is no notion of whitespace, and /*"foo"*/ 
and "/*foo*/" have distinct representations (the former is no token, and the 
latter is a string literal token with the content /*foo*/).

Once the source code has been turned into a sequence of tokens, the 
compiler walks that sequence and assigns syntactic meaning to the tokens. For 
example, ()-delimited tokens make up a group, ! tokens denote macro invo-
cations, and so on. This is the process of parsing, which ultimately produces 
an abstract syntax tree (AST) that describes the structure represented by the 
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source code. As an example, consider the expression let x = || 4, which con-
sists of the sequence of tokens let (keyword), x (identifier), = (punctuation), 
two instances of | (punctuation), and 4 (literal). When the compiler turns that 
into a syntax tree, it represents it as a statement whose pattern is the identifier x 
and whose right-hand expression is a closure that has an empty argument list and a 
literal expression of the integer literal 4 as its body. Notice how the syntax tree rep-
resentation is much richer than the token sequence, since it assigns syntactic 
meaning to the token combinations following the language’s grammar.

Rust macros dictate the syntax tree that a given sequence of tokens gets 
turned into—when the compiler encounters a macro invocation during 
parsing, it has to evaluate the macro to determine the replacement tokens, 
which will ultimately become the syntax tree for the macro invocation. At 
this point, however, the compiler is still parsing the tokens and might not be 
in a position to evaluate a macro yet, since all it has done is parse the tokens 
of the macro definition. Instead, then, the compiler defers the parsing of 
anything contained within the delimiters of a macro invocation and remem-
bers the input token sequence. When the compiler is ready to evaluate the 
indicated macro, it evaluates the macro over the token sequence, parses the 
tokens it yields, and substitutes the resulting syntax tree into the tree where 
the macro invocation was.

Technically, the compiler does do a little bit of parsing for the input 
to a macro. Specifically, it parses out basic things like string literals and 
delimited groups and so produces a sequence of token trees rather than just 
tokens. For example, the code x - (a.b + 4) parses as a sequence of three 
token trees. The first token tree is a single token that is the identifier x, the 
second is a single token that is the punctuation character -, and the third 
is a group (using parentheses as the delimiter), which itself consists of a 
sequence of five token trees: a (an identifier), . (punctuation), b (another 
identifier), + (another punctuation token), and 4 (a literal). This means 
that the input to a macro does not necessarily have to be valid Rust, but it 
must consist of code that the Rust compiler can parse. For example, you 
couldn’t write for <- x in Rust outside of a macro invocation, but inside of 
a macro invocation you can, as long as the macro produces valid syntax. 
On the other hand, you cannot pass for { to a macro because it doesn’t 
have a closing brace.

Declarative macros always generate valid Rust as output. You cannot 
have a macro generate, say, the first half of a function invocation or an if 
without the block that follows it. A declarative macro must generate an 
expression (basically anything that you can assign to a variable), a statement 
such as let x = 1;, an item like a trait definition or impl block, a type, or a 
match pattern. This makes Rust macros resistant to misuse: you simply can-
not write a declarative macro that generates invalid Rust code, because the 
macro definition itself would not compile!

That’s really all there is to declarative macros at a high level—when 
the compiler encounters a macro invocation, it passes the tokens contained 
within the invocation delimiters to the macro, parses the resulting token 
stream, and replaces the macro invocation with the resulting AST.
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How to Write Declarative Macros
An exhaustive explanation of all the syntax that declarative macros support 
is outside the scope of this book. However, we’ll cover the basics as there are 
some oddities worth pointing out.

Declarative macros consist of two main parts: matchers and transcribers. 
A given macro can have many matchers, and each matcher has an associ-
ated transcriber. When the compiler finds a macro invocation, it walks 
the  macro’s matchers from first to last, and when it finds a matcher that 
matches the tokens in the invocation, it substitutes the invocation by walk-
ing the tokens of the corresponding transcriber. Listing 7-4 shows how the 
different parts of a declarative macro rule fit together.

macro_rules! /* macro name */ {
  (/* 1st matcher */) => { /* 1st transcriber */ };
  (/* 2nd matcher */) => { /* 2nd transcriber */ };
}

Listing 7-4: Declarative macro definition components

Matchers

You can think of a macro matcher as a token tree that the compiler tries to 
twist and bend in predefined ways to match the input token tree it was given 
at the invocation site. As an example, consider a macro with the matcher 
$a:ident + $b:expr. That matcher will match any identifier (:ident) followed 
by a plus sign followed by any Rust expression (:expr). If the macro is invoked 
with x + 3 * 5, the compiler notices that the matcher matches if it sets $a = x 
and $b = 3 * 5. Even though * never appears in the matcher, the compiler 
realizes that 3 * 5 is a valid expression and that it can therefore be matched 
with $b:expr, which accepts anything that is an expression (the :expr part).

Matchers can get pretty hairy, but they have huge expressive power, 
much like regular expressions. For a not-too-hairy example, this matcher 
accepts a sequence ($()) of one or more (+) comma-separated (),) key/value 
pairs given in key => value format:

$($key:expr => $value:expr),+

And, crucially, code that invokes a macro with this matcher can give an 
arbitrarily complex expression for the key or value—the magic of match-
ers will make sure that the key and value expressions are partitioned 
appropriately.

Macro rules support a wide variety of  fragment types; you’ve already seen 
:ident for identifiers and :expr for expressions, but there is also :ty for types 
and even :tt for any single token tree! You can find a full list of the frag-
ment types in Chapter 3 of the Rust language reference (https://doc.rust-lang 
.org/reference/macros-by-example.html). These, plus the mechanism for match-
ing a pattern repeatedly ($()), enable you to match most straightforward 
code patterns. If, however, you find that it is difficult to express the pattern 
you want with a matcher, you may want to try a procedural macro instead, 

https://doc.rust-lang.org/reference/macros-by-example.html
https://doc.rust-lang.org/reference/macros-by-example.html
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where you don’t need to follow the strict syntax that macro_rules! requires. 
We’ll look at these in more detail later in the chapter.

Transcribers
Once the compiler has matched a declarative macro matcher, it generates 
code using the matcher’s associated transcriber. The variables defined by 
a macro matcher are called metavariables, and the compiler substitutes any 
occurrence of each metavariable in the transcriber (like $key in the example 
in the previous section) with the input that matches that part of the matcher. 
If you have repetition in the matcher (like $(),+ in that same example), you 
can use the same syntax in the transcriber and it will be repeated once for 
each match in the input, with each expansion holding the appropriate sub-
stitution for each metavariable for that iteration. For example, for the $key 
and $value matcher, we could write the following transcriber to generate an 
insert call into some map for each $key/$value pair that was matched:

$(map.insert($key, $value);)+

Notice that here we want a semicolon for each repetition, not just to delimit 
the repetition, so we place the semicolon inside the repetition parentheses. 

N O T E  You must use a metavariable in each repetition in the transcriber so that the compiler 
knows which repetition in the matcher to use (in case there is more than one).

Hygiene
You may have heard that Rust macros are hygienic, and perhaps that being 
hygienic makes them safer or nicer to work with, without necessarily under-
standing what that means. When we say Rust macros are hygienic, we mean 
that a declarative macro (generally) cannot affect variables that aren’t explic-
itly passed to it. A trivial example is that if you declare a variable with the 
name foo, and then call a macro that also defines a variable named foo, 
the macro’s foo is by default not visible at the call site (the place where the 
macro is called from). Similarly, macros cannot access variables defined at 
the call site (even self) unless they are explicitly passed in.

You can, most of the time, think of macro identifiers as existing in their 
own namespace that is separate from that of the code they expand into. For 
an example, take a look at the code in Listing 7-5, which has a macro that 
tries (and fails) to shadow a variable at the call site.

macro_rules! let_foo {
  ($x:expr) => {
    let foo = $x;
  }
}
let foo = 1;
// expands to let foo = 2;
let_foo!(2);
assert_eq!(foo, 1);

Listing 7-5: Macros exist in their own little universes. Mostly.
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After the compiler expands let_foo!(2), the assert looks like it should 
fail. However, the foo from the original code and the one generated by the 
macro exist in different universes and have no relationship to one another 
beyond that they happen to share a human-readable name. In fact, the 
compiler will complain that the let foo in the macro is an unused vari-
able. This hygiene is very helpful in making macros easier to debug—you 
don’t have to worry about accidentally shadowing or overwriting variables 
in the macro caller just because you happened to choose the same vari-
able names!

This hygienic separation does not apply beyond variable identifiers, 
however. Declarative macros do share a namespace for types, modules, and 
functions with the call site. This means your macro can define new func-
tions that can be called in the invoking scope, add new implementations to 
a type defined elsewhere (and not passed in), introduce a new module that 
can then be accessed where the macro was invoked, and so on. This is by 
design—if macros could not affect the broader code like this, it would be 
much more cumbersome to use them to generate types, trait implementa-
tions, and functions, which is where they come in most handy.

The lack of hygiene for types in macros is particularly important when 
writing a macro you want to export from your crate. For the macro to truly 
be reusable, you cannot assume anything about what types will be in scope 
at the caller. Maybe the code that calls your macro has a mod std {} defined 
or has imported its own Result type. To be on the safe side, make sure you 
use fully specified types like ::core::option::Option or ::alloc::boxed::Box. 
If you specifically need to refer to something in the crate that defines the 
macro, use the special metavariable $crate.

N O T E  Avoid using ::std paths if you can so that the macro will continue to work in  
no_std crates. 

You can choose to share identifiers between a macro and its caller if you 
want the macro to affect a specific variable in the caller’s scope. The key is 
to remember where the identifier originated, because that’s the namespace 
the identifier will be tied to. If you put let foo = 1; in a macro, the identi-
fier foo originates in the macro and will never be available to the identifier 
namespace at the caller. If, on the other hand, the macro takes $foo:ident 
as an argument and then writes let $foo = 1;, when the caller invokes the 
macro with !(foo), the identifier will have originated in the caller and will 
therefore refer to foo in the caller’s scope. 

The identifier does not have to be quite so explicitly passed, either; any 
identifier that appears in code that originates outside the macro will refer 
to the identifier in the caller’s scope. In the example in Listing 7-6, the vari-
able identifier appears in an :expr but nonetheless has access to the variable 
in the caller’s scope.

macro_rules! please_set {
  ($i:ident, $x:expr) => {
    $i = $x;
  }
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}
let mut x = 1;
please_set!(x, x + 1);
assert_eq!(x, 2);

Listing 7-6: Giving macros access to identifiers at the call site

We could have used = $i + 1 in the macro instead, but we could not 
have used = x + 1 as the name x is not available in the macro’s definition 
scope.

One last note on declarative macros and scoping: unlike pretty much 
everything else in Rust, declarative macros exist in the source code only after 
they are declared. If you try to use a macro that you define further down in 
the file, this will not work! This applies globally to your project; if you declare 
a macro in one module and want to use it in another, the module you declare 
the macro in must appear earlier in the crate, not later. If foo and bar are mod-
ules at the root of a crate, and foo declares a macro that bar wants to use, then 
mod foo must appear before mod bar in lib.rs!

N O T E  There is one exception to this odd scoping of macros (formally called textual scop-
ing), and that is if you mark the macro with #[macro_export]. That annotation effec-
tively hoists the macro to the root of the crate and marks it as pub so that it can then be 
used anywhere in your crate or by your crate’s dependents.

Procedural Macros
You can think of a procedural macro as a combination of a parser and code 
generation, where you write the glue code in between. At a high level, with 
procedural macros, the compiler gathers the sequence of input tokens to 
the macro and runs your program to figure out what tokens to replace 
them with.

Procedural macros are so called because you define how to generate 
code given some input tokens rather than just writing what code gets gener-
ated. There are very few smarts involved on the compiler’s side—as far as it is 
aware, the procedural macro is more or less a source code preprocessor that 
may replace code arbitrarily. The requirement that your input can be parsed 
as a stream of Rust tokens still holds, but that’s about it!

Types of Procedural Macros
Procedural macros come in three different flavors, each specialized to a 
particular common use case: 

•	 Function-like macros, like the ones that macro_rules! generates 

•	 Attribute macros, like #[test] 

•	 Derive macros, like #[derive(Serialize)]

All three types use the same underlying mechanism: the compiler pro-
vides your macro with a sequence of tokens, and it expects you to produce 
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a sequence of tokens in return that are (probably) related to the input tree. 
However, they differ in how the macro is invoked and how its output is han-
dled. We’ll cover each one briefly.

Function-Like Macros

The function-like macro is the simplest form of procedural macro. Like a 
declarative macro, it simply replaces the macro code at the call site with the 
code that the procedural macro returns. However, unlike with declarative 
macros, all the guard rails are off: these macros (like all procedural mac-
ros) are not required to be hygienic and will not protect you from interact-
ing with identifiers in the surrounding code at the call site. Instead, your 
macros are expected to explicitly call out which identifiers should overlap 
with the surrounding code (using Span::call_site) and which should be 
treated as private to the macro (using Span::mixed_site, which we’ll discuss 
later). 

Attribute Macros

The attribute macro also replaces the item that the attribute is assigned to 
wholesale, but this one takes two inputs: the token tree that appears in the 
attribute (minus the attribute’s name) and the token tree of the entire item 
it is attached to, including any other attributes that item may have. Attribute 
macros allow you to easily write a procedural macro that transforms an 
item, such as by adding a prelude or epilogue to a function definition (like 
#[test] does) or by modifying the fields of a struct.

Derive Macros

The derive macro is slightly different from the other two in that it adds 
to, rather than replaces, the target of the macro. Even though this limita-
tion may seem severe, derive macros were one of the original motivating 
factors behind the creation of procedural macros. Specifically, the serde 
crate needed derive macros to be able to implement its now-well-known 
#[derive(Serialize, Deserialize)] magic. 

Derive macros are arguably the simplest of the procedural macros, 
since they have such a rigid form: you can append items only after the 
annotated item; you can’t replace the annotated item, and you cannot have 
the derivation take arguments. Derive macros do allow you to define helper 
attributes—attributes that can be placed inside the annotated type to give 
clues to the derive macro (like #[serde(skip)])—but these function mostly 
like markers and are not independent macros.

The Cost of Procedural Macros
Before we talk about when each of the different procedural macro types is 
appropriate, it’s worth discussing why you may want to think twice before 
you reach for a procedural macro—namely, increased compile time.

Procedural macros can significantly increase compile times for two 
main reasons. The first is that they tend to bring with them some pretty 
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heavy dependencies. For example, the syn crate, which provides a parser 
for Rust token streams that makes the experience of writing procedural 
macros much easier, can take tens of seconds to compile with all features 
enabled. You can (and should) mitigate this by disabling features you do 
not need and compiling your procedural macros in debug mode rather 
than release mode. Code often compiles several times faster in debug 
mode, and for most procedural macros, you won’t even notice the differ-
ence in execution time.

The second reason why procedural macros increase compile time is 
that they make it easy for you to generate a lot of code without realizing it. 
While the macro saves you from having to actually type the generated code, 
it does not save the compiler from having to parse, compile, and optimize 
it. As you use more procedural macros, that generated boilerplate adds up, 
and it can bloat your compile times.

That said, the actual execution time of procedural macros is rarely a 
factor in overall compile time. While the compiler has to wait for the proce-
dural macro to do its thing before it can continue, in practice, most proce-
dural macros don’t do any heavy computation. That said, if your procedural 
macro is particularly involved, you may end up with your compiles spend-
ing a significant chunk of execution time on your procedural macro code, 
which is worth keeping an eye out for!

So You Think You Want a Macro
Let’s now look at some good uses for each type of procedural macro. We’ll 
start with the easy one: derive macros.

When to Use Derive Macros

Derive macros are used for one thing, and one thing only: to automate the 
implementation of a trait where automation is possible. Not all traits have 
obvious automated implementations, but many do. In practice, you should 
consider adding a derive macro for a trait only if the trait is implemented 
often and if its implementation for any given type is fairly obvious. The first 
of these conditions may seem like common sense; if your trait is going to be 
implemented only once or twice, it’s probably not worth writing and main-
taining a convoluted derive macro for it. 

The second condition may seem stranger, however: what does it mean 
for the implementation to be “obvious”? Consider a trait like Debug. If you 
were told what Debug does and were shown a type, you would probably 
expect an implementation of Debug to output the name of each field along-
side the debug representation of its value. And that’s what derive(Debug) 
does. What about Clone? You’d probably expect it to just clone every field—
and again, that’s what derive(Clone) does. With derive(serde::Serialize), we 
expect it to serialize every field and its value, and it does just that. In gen-
eral, you want the derivation of a trait to match the developer’s intuition for 
what it probably does. If there is no obvious derivation for a trait, or worse 
yet, if your derivation does not match the obvious implementation, then 
you’re probably better off not giving it a derive macro.
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When to Use Function-Like Macros

Function-like macros are harder to give a general rule of thumb for. You 
might say you should use function-like macros when you want a function-
like macro but can’t express it with macro_rules!, but that’s a fairly subjective 
guideline. You can do a lot with declarative macros if you really put your 
mind to it, after all! 

There are two particularly good reasons to reach for a function-like 
macro:

•	 If you already have a declarative macro, and its definition is becoming 
so hairy that the macro is hard to maintain. 

•	 If you have a pure function that you need to be able to execute at com-
pile time but cannot express it with const fn. An example of this is the phf 
crate, which generates a hash map or set using a perfect hash function 
when given a set of keys provided at compile time. Another is  hex-literal, 
which takes a string of hexadecimal characters and replaces it with the 
corresponding bytes. In general, anything that does not merely trans-
form the input at compile time but actually computes over it is likely to 
be a good candidate.

I do not recommend reaching for a function-like macro just so that you 
can break hygiene within your macro. Hygiene for function-like macros is a 
feature that avoids many debugging headaches, and you should think very 
carefully before you intentionally break it.

When to Use Attribute Macros

That leaves us with attribute macros. Though these are arguably the most 
general of procedural macros, they are also the hardest to know when to 
use. Over the years and time and time again, I have seen four ways in which 
attribute macros add tremendous value.

Test generation

It is very common to want to run the same test under multiple different 
configurations, or many similar tests with the same bootstrapping code. 
While a declarative macro may let you express this, your code is often 
easier to read and maintain if you have an attribute like #[foo_test] that 
introduces a setup prelude and postscript in each annotated test, or a 
repeatable attribute like #[test_case(1)] #[test_case(2)] to mark that a 
given test should be repeated multiple times, once with each input.

Framework annotations

Libraries like rocket use attribute macros to augment functions and 
types with additional information that the framework then uses without 
the user having to do a lot of manual configuration. It’s so much more 
convenient to be able to write #[get("/<name>")] fn hello(name: String) 
than to have to set up a configuration struct with function pointers and 
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the like. Essentially, the attributes make up a miniature domain-specific 
language (DSL) that hides a lot of boilerplate that’d otherwise be nec-
essary. Similarly, the asynchronous I/O framework tokio lets you use 
#[tokio::main] async fn main() to automatically set up a runtime and run 
your asynchronous code, thereby saving you from writing the same run-
time setup in every asynchronous application’s main function.

Transparent middleware

Some libraries want to inject themselves into your application in unobtru-
sive ways to provide added value that does not change the application’s 
functionality. For example, tracing and logging libraries like tracing and 
metric collection libraries like metered allow you to transparently instru-
ment a function by adding an attribute to it, and then every call to that 
function will run some additional code dictated by the library.

Type transformers

Sometimes you want to go beyond merely deriving traits for a type and 
actually change the type’s definition in some fundamental way. In these 
cases, attribute macros are the way to go. The pin_project crate is a great 
example of this: its primary purpose is not to implement a particular 
trait but rather to ensure that all pinned access to fields of a given type 
happens according to the strict rules that are set forth by Rust’s Pin type 
and the Unpin trait (we’ll talk more about those types in Chapter 8). 
It does this by generating additional helper types, adding methods to 
the annotated type, and introducing static safety checks to ensure that 
users don’t accidentally shoot themselves in the foot. While pin_project 
could have been implemented with a procedural derive macro, that 
derived trait implementation would likely not have been obvious, which 
violates one of our rules for when to use procedural macros.

How Do They Work?
At the heart of all procedural macros is the TokenStream type, which can be 
iterated over to get the individual TokenTree items that make up that token 
stream. A TokenTree is either a single token—like an identifier, punctuation, 
or a literal—or another TokenStream enclosed in a delimiter like () or {}. By 
walking a TokenStream, you can parse out whatever syntax you wish as long as 
the individual tokens are valid Rust tokens. If you want to parse your input 
specifically as Rust code, you will likely want to use the syn crate, which 
implements a complete Rust parser and can turn a TokenStream into an easy-
to-traverse Rust AST.

With most procedural macros, you want to not only parse a TokenStream 
but also produce Rust code to be injected into the program that invokes the 
procedural macro. There are two main ways to do so. The first is to manually 
construct a TokenStream and extend it one TokenTree at a time. The second is to 
use TokenStream’s implementation of FromStr, which lets you parse a string that 
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contains Rust code into a TokenStream with "".parse::<TokenStream>(). You can 
also mix and match these; if you want to prepend some code to your macro’s 
input, just construct a TokenStream for the prologue, and then use the Extend 
trait to append the original input.

N O T E  TokenStream also implements Display, which pretty-prints the tokens in the stream. 
This comes in super handy for debugging!

Tokens are very slightly more magical than I’ve described so far in that 
every token, and indeed every TokenTree, also has a span. Spans are how the 
compiler ties generated code back to the source code that generated it. 
Every token’s span marks where that token originated. For example, con-
sider a (declarative) macro like the one in Listing 7-7, which generates a 
trivial Debug implementation for the provided type.

macro_rules! name_as_debug {
  ($t:ty) => {
    impl ::core::fmt::Debug for $t {
      fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result
      { ::core::write!(f, ::core::stringify!($t)) }
} }; }

Listing 7-7: A very simple macro for implementing Debug

Now let’s imagine that someone invokes this macro with name_as_debug! 
(u31). Technically, the compiler error occurs inside the macro, specifically 
where we write for $t (the other use of $t can handle an invalid type). But  
we’d like the compiler to point the user at the u31 in their code—and indeed, 
that’s what spans let us do.

The span of the $t in the generated code is the code mapped to $t in 
the macro invocation. That information is then carried through the com-
piler and associated with the eventual compiler error. When that compiler 
error is eventually printed, the compiler will print the error from inside the 
macro saying that the type u31 does not exist but will highlight the u31 argu-
ment in the macro invocation, since that’s the error’s associated span!

Spans are quite flexible, and they enable you to write procedural 
macros that can produce sophisticated error messages if you use the 
 compile_error! macro. As its name implies, compile_error! causes the com-
piler to emit an error wherever it is placed with the provided string as the 
message. This may not seem very useful, until you pair it with a span. By 
setting the span of the TokenTree you generate for the compile_error! invoca-
tion to be equal to the span of some subset of the input, you are effectively 
telling the compiler to emit this compiler error and point the user to this 
part of the source. Together, these two mechanisms let a macro produce 
errors that seem to stem from the relevant part of the code, even though 
the actual compiler error is somewhere in the generated code that the 
user never even sees!
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N O T E  If you’ve ever been curious how syn’s error handling works, its Error type imple-
ments an Error::to_compile_error method, which turns it into a TokenStream that 
holds only a compile_error! directive. What’s particularly neat with syn’s Error type 
is that it internally holds a collection of errors, each of which produces a distinct 
 compile_error! directive with its own span so that you can easily produce multiple 
independent errors from your procedural macro.

The power of spans doesn’t end there; spans are also how Rust’s macro 
hygiene is implemented. When you construct an Ident token, you also give 
the span for that identifier, and that span dictates the scope of that identi-
fier. If you set the identifier’s span to be Span::call_site(), the identifier 
is resolved where the macro was called from and will thus not be isolated 
from the surrounding scope. If, on the other hand, you set it to Span::mixed 
_site() then (variable) identifiers are resolved at the macro definition site, 
and so will be completely hygienic with respect to similarly named variables 
at the call site. Span::mixed_site is so called because it matches the rules 
around identifier hygiene for macro_rules!, which, as we discussed earlier, 
“mixes” identifier resolution between using the macro definition site for 
variables and using the call site for types, modules, and everything else.

Summary
In this chapter we covered both declarative and procedural macros, and 
looked at when you might find each of them useful in your own code. We 
also took a deeper dive into the mechanisms that underpin each type of 
macro and some of the features and gotchas to be aware of when you write 
your own macros. In the next chapter, we’ll start our journey into asyn-
chronous programming and the Future trait. I promise—it’s just on  
the next page.





8
A S Y N C H R O N O U S  P R O G R A M M I N G

Asynchronous programming is, as the 
name implies, programming that is not 

 synchronous. At a high level, an asynchro-
nous operation is one that executes in the 

background—the program won’t wait for the asyn-
chronous operation to complete but will instead 
 continue to the next line of code immediately.  
If you’re not already familiar with asynchronous programming, that defini-
tion may feel insufficient as it doesn’t actually explain what asynchronous 
programming is. To really understand the asynchronous programming 
model and how it works in Rust, we have to first dig into what the alter-
native is. That is, we need to understand the synchronous programming 
model before we can understand the asynchronous one. This is important 
in both clarifying the concepts and demonstrating the trade-offs of using 
asynchronous programming: an asynchronous solution is not always the 
right one! We’ll start this chapter by taking a quick journey through what 
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motivates asynchronous programming as a concept in the first place; then 
we’ll dig into how asynchrony in Rust actually works under the hood.

What’s the Deal with Asynchrony?
Before we get to the details of the synchronous and asynchronous program-
ming models, we first need to take a quick look at what your computer is 
actually doing when it runs your programs.

Computers are fast. Really fast. So fast, in fact, that they spend most of 
their time waiting for things to happen. Unless you’re decompressing files, 
encoding audio, or crunching numbers, chances are that your CPU mostly 
sits idle, waiting for operations to complete. It’s waiting for a network packet 
to arrive, for the mouse to move, for the disk to finish writing some bytes, or 
maybe even just for a read from main memory to complete. From the CPU’s 
perspective, eons go by between most such events. When one does occur, the 
CPU runs a few more instructions, then goes back to waiting again. Take a 
look at your CPU utilization—it’s probably somewhere in the low single digits, 
and that’s likely where it hovers the majority of the time.

Synchronous Interfaces
Synchronous interfaces allow your program (or rather, a single thread in 
your program) to execute only a single operation at a time; each operation 
has to wait for the previous synchronous operation to finish before it gets 
to run. Most interfaces you see in the wild are synchronous: you call them, 
they go do some stuff, and eventually they return when the operation has 
completed and your program can continue from there. The reason for this, 
as we’ll see later in this chapter, is that making an operation asynchronous 
takes a fair bit of extra machinery. Unless you need the benefits of asyn-
chrony, sticking to the synchronous model requires much less pomp and 
circumstance.

Synchronous interfaces hide all this waiting; the application calls a 
function that says “write these bytes to this file,” and some time later, that 
function completes and the next line of code executes. Behind the scenes, 
what really happens is that the operating system queues up a write opera-
tion to the disk and then puts the application to sleep until the disk reports 
that it has finished the write. The application experiences this as the func-
tion taking a long time to execute, but in reality it isn’t really executing at 
all, just waiting.

An interface that performs operations sequentially in this way is also 
often referred to as blocking, since the operation in the interface that has 
to wait for some external event to happen in order for it to make progress 
blocks further execution until that event happens. Whether you refer to an 
interface as synchronous or blocking, the basic idea is the same: the appli-
cation does not move on until the current operation finishes. While the 
operation is waiting, so is the application.

Synchronous interfaces are usually considered to be easy to work with 
and simple to reason about, since your code executes just one line at a time. 
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But they also allow the application to do only one thing at a time. That 
means if you want your program to wait for either user input or a network 
packet, you’re out of luck unless your operating system provides an opera-
tion specifically for that. Similarly, even if your application could do some 
other useful work while the disk is writing a file, it doesn’t have that option 
as the file write operation blocks the execution!

Multithreading
By far the most common solution to allowing concurrent execution is to use 
multithreading. In a multithreaded program, each thread is responsible for 
executing a particular independent sequence of blocking operations, and 
the operating system multiplexes among the threads so that if any thread can 
make progress, progress is made. If one thread blocks, some other thread 
may still be runnable, and so the application can continue to do  useful work.

Usually, these threads communicate with each other using a synchroni-
zation primitive like a lock or a channel so that the application can still coor-
dinate their efforts. For example, you might have one thread that waits for 
user input, one thread that waits for network packets, and another thread 
that waits for either of those threads to send a message on a channel shared 
between all three threads.

Multithreading gives you concurrency—the ability to have multiple inde-
pendent operations that can be executed at any one time. It’s up to the sys-
tem running the application (in this case, the operating system) to choose 
among the threads that aren’t blocked and decide which to execute next. 
If one thread is blocked, it can choose to run another one that can make 
progress instead.

Multithreading combined with blocking interfaces gets you quite far, 
and large swaths of production-ready software are built in this way. But this 
approach is not without its shortcomings. First, keeping track of all these 
threads quickly gets cumbersome; if you have to spin up a thread for every 
concurrent task, including simple ones like waiting for keyboard input, the 
threads add up fast, and so does the additional complexity needed to keep 
track of how all those threads interact, communicate, and coordinate.

Second, switching between threads gets costly the more of them there 
are. Every time one thread stops running and another one starts back up 
in its place, you need to do a round-trip to the operating system scheduler, 
and that’s not free. On some platforms, spawning new threads is also a fairly 
heavyweight process. Applications with high performance needs often miti-
gate this cost by reusing threads and using operating system calls that allow 
you to block on many related operations, but ultimately you are left with the 
same problem: blocking interfaces require that you have as many threads as 
the number of blocking calls you want to make.

Finally, threads introduce parallelism into your program. The distinc-
tion between concurrency and parallelism is subtle, but important: con-
currency means that the execution of your tasks is interleaved, whereas 
parallelism means that multiple tasks are executing at the same time. If you 
have two tasks, their execution expressed in ASCII might look like _-_-_ 
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(concurrency) versus ===== (parallelism). Multithreading does not necessar-
ily imply parallelism—even though you have many threads, you might have 
only a single core, so only one thread is executing at a given time—but the 
two usually go hand in hand. You can make two threads mutually exclusive 
in their execution by using a Mutex or other synchronization primitive, but 
that introduces additional complexity—threads want to run in parallel. 
And while parallelism is often a good thing—who doesn’t want their pro-
gram to run faster on more cores—it also means that your program must 
handle truly simultaneous access to shared data structures. This means 
moving from Rc, Cell, and RefCell to the more powerful but also slower Arc 
and Mutex. While you may want to use the latter types in your concurrent 
program to enable parallelism, threading forces you to use them. We’ll look 
at multithreading in much greater detail in Chapter 10.

Asynchronous Interfaces
Now that we’ve explored synchronous interfaces, we can look at the alter-
native: asynchronous or nonblocking interfaces. An asynchronous interface 
is one that may not yield a result straightaway, and may instead indicate 
that the result will be available at some later time. This gives the caller the 
opportunity to do something else in the meantime rather than having to go 
to sleep until that particular operation completes. In Rust parlance, an asyn-
chronous interface is a method that returns a Poll, as defined in Listing 8-1.

enum Poll<T> {
    Ready(T),
    Pending
}

Listing 8-1: The core of asynchrony: the “here you are or come back later” type

Poll usually shows up in the return type of functions whose names start 
with poll—these are methods that signal they can attempt an operation 
without blocking. We’ll get into how exactly they do that later in this chap-
ter, but in general they attempt to perform as much as they can of the oper-
ation before they would normally block, and then return. And crucially, 
they remember where they left off so that they can resume execution later 
when additional progress can again be made.

These nonblocking functions allow us to easily perform multiple tasks 
concurrently. For example, if you want to read from either the network or 
the user’s keyboard, whichever has an event available first, all you have to 
do is poll both in a loop until one of them returns Poll::Ready. No need for 
any additional threads or synchronization!

The word loop here should make you a little nervous. You don’t want your 
program to burn through a loop three billion times a second when it may 
be minutes until the next input occurs. In the world of blocking interfaces, 
this wasn’t a problem since the operating system simply put the thread to 
sleep and then took care of waking it up when a relevant event occurred, but 
how do we avoid burning cycles while waiting in this brave new nonblocking 
world? That’s what much of the remainder of this chapter will be about.
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Standardized Polling
To get to a world where every library can be used in a nonblocking fashion, 
we could have every library author cook up their own poll methods, all with 
slightly different names, signatures, and return types—but that would quickly 
get unwieldy. Instead, in Rust, polling is standardized through the Future 
trait. A simplified version of Future is shown in Listing 8-2 (we’ll get back to 
the real one later in this chapter).

trait Future {
    type Output;
    fn poll(&mut self) -> Poll<Self::Output>;
}

Listing 8-2: A simplified view of the Future trait

Types that implement the Future trait are known as futures and repre-
sent values that may not be available yet. A future could represent the next 
time a network packet comes in, the next time the mouse cursor moves, 
or just the point at which some amount of time has elapsed. You can read 
Future<Output = Foo> as “a type that will produce a Foo in the future.” Types 
like this are often referred to in other languages as promises—they promise 
that they will eventually yield the indicated type. When a future eventually 
returns Poll::Ready(T), we say that the future resolves into a T.

With this trait in place, we can generalize the pattern of providing poll 
methods. Instead of having methods like poll_recv and poll_keypress, we can 
have methods like recv and keypress that both return impl Future with an 
appropriate Output type. This doesn’t change the fact that you have to poll 
them—we’ll deal with that later—but it does mean that at least there is a 
standardized interface to these kinds of pending values, and we don’t need 
to use the poll_ prefix everywhere.

N O T E  In general, you should not poll a future again after it has returned Poll::Ready. If 
you do, the future is well within its rights to panic. A future that is safe to poll after it 
has returned Ready is sometimes referred to as a fused future.

Ergonomic Futures
Writing a type that implements Future in the way I’ve described so far is 
quite a pain. To see why, first take a look at the fairly straightforward asyn-
chronous code block in Listing 8-3 that simply tries to forward messages 
from the input channel rx to the output channel tx.

async fn forward<T>(rx: Receiver<T>, tx: Sender<T>) {
    while let Some(t) = rx.next().await {
        tx.send(t).await;
    }
}

Listing 8-3: Implementing a channel-forwarding future using async and await
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This code, written using async and await syntax, looks very similar to its 
equivalent synchronous code and is easy to read. We simply send each mes-
sage we receive in a loop until there are no more messages, and each await 
point corresponds to a place where a synchronous variant might block. Now 
think about if you instead had to express this code by manually implement-
ing the Future trait. Since each call to poll starts at the top of the function, 
you’d need to package the necessary state to continue from the last place 
the code yielded. The result is fairly grotesque, as Listing 8-4 demonstrates.

enum Forward<T> { 1 
    WaitingForReceive(ReceiveFuture<T>, Option<Sender<T>>),
    WaitingForSend(SendFuture<T>, Option<Receiver<T>>),
}

impl<T> Future for Forward<T> {
    type Output = (); 2 
    fn poll(&mut self) -> Poll<Self::Output> {
        match self { 3 
            Forward::WaitingForReceive(recv, tx) => {
                if let Poll::Ready((rx, v)) = recv.poll() {
                    if let Some(v) = v {
                        let tx = tx.take().unwrap(); 4 
                        *self = Forward::WaitingForSend(tx.send(v), Some(rx)); 5 
                        // Try to make progress on sending.
                        return self.poll(); 6 
                    } else {
                        // No more items.
                        Poll::Ready(())
                    }
                } else {
                    Poll::Pending
                }
            }
            Forward::WaitingForSend(send, rx) => {
                if let Poll::Ready(tx) = send.poll() {
                    let rx = rx.take().unwrap();
                    *self = Forward::WaitingForReceive(rx.receive(), Some(tx));
                    // Try to make progress on receiving.
                    return self.poll();
                } else {
                    Poll::Pending
                }
            }
        }
    }
}

Listing 8-4: Manually implementing a channel-forwarding future

You’ll rarely have to write code like this in Rust anymore, but it gives 
important insight into how things work under the hood, so let’s walk through 
it. First, we define our future type as an enum 1, which we’ll use to keep track 
of what we’re currently waiting on. This is a consequence of the fact that 
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when we return Poll::Pending, the next call to poll will start at the top of the 
function again. We need some way to know what we were in the middle of so 
that we know which operation to continue on. Furthermore, we need to keep 
track of different information depending on what we’re doing: if we’re wait-
ing for a receive to finish, we need to keep that ReceiveFuture (the definition 
of which is not shown in this example) so that we can poll it the next time we 
are polled ourselves, and the same goes for SendFuture. The Options here might 
strike you as weird too; we’ll get back to those shortly.

When we implement Future for Forward, we declare its output type as 
() 2 because this future doesn’t actually return anything. Instead, the 
future resolves (with no result) when it has finished forwarding everything 
from the input channel to the output channel. In a more complete exam-
ple, the Output of our forwarding type might be a Result so that it could com-
municate errors from receive() and send() back up the stack to the function 
that’s polling for the completion of the forwarding. But this code is compli-
cated enough already, so we’ll leave that for another day.

When Forward is polled, it needs to resume wherever it last left off, 
which we find out by matching on the enum variant currently held in 
self 3. For whichever branch we go into, the first step is to poll the future 
that blocks progress for the current operation; if we’re trying to receive, we 
poll the ReceiveFuture, and if we’re trying to send, we poll the SendFuture. If 
that call to poll returns Poll::Pending, then we can make no progress, and 
we return Poll::Pending ourselves. But if the current future resolves, we 
have work to do!

When one of the inner futures resolves, we need to update what the 
current operation is by switching which enum variant is stored in self. 
In order to do so, we have to move out of self to call Receiver::receive or 
Sender::send—but we can’t do that because all we have is &mut self. So, we 
store the state we have to move in an Option, which we move out of with 
Option::take 4. This is silly since we’re about to overwrite self anyway 5, 
and hence the Options will always be Some, but sometimes tricks are needed 
to make the borrow checker happy.

Finally, if we do make progress, we then poll self again 6 so that if 
we can immediately make progress on the pending send or receive, we do 
so. This is actually necessary for correctness when implementing the real 
Future trait, which we’ll get back to later, but for now think of this as an 
optimization.

We just hand-wrote a state machine: a type that has a number of possible 
states and moves between them in response to particular events. This was a 
fairly simple state machine, at that. Imagine having to write code like this for 
more complicated use cases where you have additional intermediate steps!

Beyond writing the unwieldy state machine, we have to know the types 
of the futures that Sender::send and Receiver::receive return so that we can 
store them in our type. If those methods instead returned impl Future, we’d 
have no way to write out the types for our variants. The send and receive 
methods also have to take ownership of the sender and the receiver; if they 
did not, the lifetimes of the futures they returned would be tied to the 
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borrow of self, which would end when we return from poll. But that would 
not work, since we’re trying to store those futures in self.

N O T E  You may have noticed that Receiver looks a lot like an asynchronous version of 
Iterator. Others have noticed the same thing, and the standard library is on its way 
to adding a trait specifically for types that can meaningfully implement poll_next. 
Down the line, these asynchronous iterators (often referred to as streams) may end up 
with first-class language support, such as the ability to loop over them directly!

Ultimately, this code is hard to write, hard to read, and hard to change. If 
we wanted to add error handling, for example, the code complexity would 
increase significantly. Luckily, there’s a better way!

async/await
Rust 1.39 gave us the async keyword and the closely related await postfix 
operator, which we used in the original example in Listing 8-3. Together, 
they provide a much more convenient mechanism for writing asynchronous 
state machines like the one in Listing 8-5. Specifically, they let you write the 
code in such a way that it doesn’t even look like a state machine!

async fn forward<T>(rx: Receiver<T>, tx: Sender<T>) {
    while let Some(t) = rx.next().await {
        tx.send(t).await;
    }
}

Listing 8-5: Implementing a channel-forwarding future using async and await, repeated 
from Listing 8-3

If you don’t have much experience with async and await, the difference 
between Listing 8-4 and Listing 8-5 might give you an idea of why the Rust 
community was so excited to see them land. But since this is an intermedi-
ate book, let’s dive a little deeper to understand just how this short segment 
of code can replace the much longer manual implementation. To do that, 
we first need to talk about generators—the mechanism by which async and 
await are implemented.

Generators

Briefly described, a generator is a chunk of code with some extra compiler-
generated bits that enables it to stop, or yield, its execution midway through 
and then resume from where it last yielded later on. Take the forward func-
tion in Listing 8-3, for example. Imagine that it gets to the call to send, but 
the channel is currently full. The function can’t make any more progress, 
but it also cannot block (this is nonblocking code, after all), so it needs to 
return. Now suppose the channel eventually clears and we want to proceed 
with the send. If we call forward again from the top, it’ll call next again and 
the item we previously tried to send will be lost, so that’s no good. Instead, 
we turn forward into a generator.
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Whenever the forward generator cannot make progress anymore, it 
needs to store its current state somewhere so that when its execution even-
tually resumes, it resumes in the right place with the right state. It saves the 
state through an associated data structure that’s generated by the compiler, 
which contains all the state of the generator at a given point in time. A 
method on that data structure (also generated) then allows the generator 
to resume from its current state, stored in &mut self, and updates the state 
again when the generator again cannot make progress.

This “return but allow me to resume later” operation is called yielding, 
which effectively means it returns while keeping some extra state on the 
side. When we later want to resume a call to forward, we invoke the known 
entry point into the generator (the resume method, which is poll for async 
generators), and the generator inspects the previously stored state in self 
to decide what to do next. This is exactly the same thing we did manually in 
Listing 8-4! In other words, the code in Listing 8-5 loosely desugars to the 
hypothetical code shown in Listing 8-6.

generator fn forward<T>(rx: Receiver<T>, tx: Sender<T>) {
    loop {
        let mut f = rx.next();
        let r = if let Poll::Ready(r) = f.poll() { r } else { yield };
        if let Some(t) = r {
            let mut f = tx.send(t);
            let _ = if let Poll::Ready(r) = f.poll() { r } else { yield };
        } else { break Poll::Ready(()); }
    }
}

Listing 8-6: Desugaring async/await into a generator

At the time of writing, generators are not actually usable in Rust—they 
are only used internally by the compiler to implement async/await—but that 
may change in the future. Generators come in handy in a number of cases, 
such as to implement iterators without having to carry around a struct or to 
implement an impl Iterator that figures out how to yield items one at a time.

If you look closely at Listings 8-5 and 8-6, they may seem a little magical 
once you know that every await or yield is really a return from the function. 
After all, there are several local variables in the function, and it’s not clear 
how they’re restored when we resume later on. This is where the compiler-
generated part of generators comes into play. The compiler transparently 
injects code to persist those variables into and read them from the genera-
tor’s associated data structure, rather than the stack, at the time of execu-
tion. So if you declare, write to, or read from some local variable a, you are 
really operating on something akin to self.a. Problem solved! It’s all really 
quite marvelous.

One subtle but important difference between the manual forward imple-
mentation and the async/await version is that the latter can hold references 
across yield points. This enables functions like Receiver::next and Sender::send 
in Listing 8-5 to take &mut self rather than the self they took in Listing 8-4. 
If we tried to use a &mut self receiver for these methods in the manual state 
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machine implementation, the borrow checker would have no way to enforce 
that the Receiver stored inside Forward cannot be referenced between when 
Receiver::next is called and when the future it returns resolves, and so it would 
reject the code. Only by moving the Receiver into the future can we convince 
the compiler that the Receiver is not otherwise accessible. Meanwhile, with 
async/await, the borrow checker can inspect the code before the compiler 
turns it into a state machine and verify that rx is indeed not accessed again 
until after the future is dropped, when the await on it returns.

T HE SIZE OF GENER ATORS

The data structure used to back a generator’s state must be able to hold the com-
bined state at any one yield point . If your async fn contains, say, a [u8; 8192], 
those 8KiB must be stored in the generator itself . Even if your async fn contains 
only smaller local variables, it must also contain any future that it awaits, since it 
needs to be able to poll such a future later, when poll is invoked .

This nesting means that generators, and thus futures based on async 
functions and blocks, can get quite large without any visible indicator of that 
increased size in your code . This can in turn impact your program’s runtime 
performance, since those giant generators may have to be copied across func-
tion calls and in and out of data structures, which amounts to a fair amount of 
memory copying . In fact, you can usually identify when the size of your gener-
ator-based futures is affecting performance by looking for excessive amounts of 
time spent in the memcpy function in your application’s performance profiles!

Finding these large futures isn’t always easy, however, and often requires 
manually identifying long or complex chains of async functions . Clippy may 
be able to help with this in the future, but at the time of writing, you’re on your 
own . When you do find a particularly large future, you have two options: you 
can try to reduce the amount of local state the async functions need, or you 
can move the future to the heap (with Box::pin) so that moving the future just 
requires moving the pointer to it . The latter is by far the easiest way to go, but 
it also introduces an extra allocation and a pointer indirection . Your best bet is 
usually to put the problematic future on the heap, measure your performance, 
and then use your performance benchmarks to guide you from there .

Pin and Unpin
We’re not quite done. While generators are neat, a challenge arises from 
the technique as I’ve described it so far. In particular, it’s not clear what 
happens if the code in the generator (or, equivalently, the async block) takes 
a reference to a local variable. In the code from Listing 8-5, the future that 
rx.next() returns must necessarily hold a reference to rx if a next message 
is not immediately available so that it knows where to try again when the 
generator next resumes. When the generator yields, the future and the ref-
erence the future contains get stashed away inside the generator. But what 
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now happens if the generator is moved? Specifically, look at the code in 
Listing 8-7, which calls forward.

async fn try_forward<T>(rx: Receiver<T>, tx: Sender<T>) -> Option<impl Future> 
{
    let mut f = forward(rx, tx);
    if f.poll().is_pending() { Some(f) } else { None }
}

Listing 8-7: Moving a future after polling it

The try_forward function polls forward only once, to forward as many 
messages as possible without blocking. If the receiver may still produce more 
messages (that is, if it returned Poll::Pending instead of Poll::Ready(None)), 
those messages are deferred to be forwarded at some later time by returning 
the forwarding future to the caller, which may choose to poll again at a time 
when it sees fit.

Let’s work through what happens here with what we know about async 
and await so far. When we poll the forward generator, it goes through the 
while loop some unknown number of times and eventually returns either 
Poll::Ready(()) if the receiver ended, or Poll::Pending otherwise. If it returns 
Poll::Pending, the generator contains a future returned from either rx.next() 
or tx.send(t). Those futures both contain a reference to one of the argu-
ments initially provided to forward (rx and tx, respectively), which must also 
be stored in the generator. But when try_forward returns the entire genera-
tor, the fields of the generator also move. Thus, rx and tx no longer reside 
at the same locations in memory, and the references stored in the stashed-
away future are no longer pointing to the right data!

What we’ve run into here is a case of a self-referential data structure: one 
that holds both data and references to that data. With generators, these self-
referential structures are very easy to construct, and being unable to support 
them would be a significant blow to ergonomics because it would mean you 
wouldn’t be able to hold references across any yield point. The (ingenious) 
solution for supporting self-referential data structures in Rust comes in the 
form of the Pin type and the Unpin trait. Very briefly, Pin is a wrapper type that 
prevents the wrapped type from being (safely) moved, and Unpin is a marker 
trait that says the implementing type can be removed safely from a Pin.

Pin

There’s a lot of nuance to cover here, so let’s start with a concrete use of 
the Pin wrapper. Listing 8-2 gave you a simplified version of the Future trait, 
but we’re now ready to peel back one part of the simplification. Listing 8-8 
shows the Future trait somewhat closer to its final form.

trait Future {
    type Output;
    fn poll(self: Pin<&mut Self>) -> Poll<Self::Output>;
}

Listing 8-8: A less simplified view of the Future trait with Pin
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In particular, this definition requires that you call poll on Pin<&mut Self>. 
Once you have a value behind a Pin, that constitutes a contract that that value 
will never move again. This means that you can construct self-references 
internally to your heart’s delight, exactly as you want for generators.

N O T E  While Future makes use of Pin, Pin is not tied to the Future trait—you can use Pin for 
any self-referential data structure.

But how do you get a Pin to call poll? And how can Pin ensure that 
the contained value won’t move? To see how this magic works, let’s look 
at the definition of std::pin::Pin and some of its key methods, shown in 
Listing 8-9.

struct Pin<P> { pointer: P }
impl<P> Pin<P> where P: Deref {
    pub unsafe fn new_unchecked(pointer: P) -> Self;
}
impl<'a, T> Pin<&'a mut T> {
    pub unsafe fn get_unchecked_mut(self) -> &'a mut T;
}
impl<P> Deref for Pin<P> where P: Deref {
    type Target = P::Target;
    fn deref(&self) -> &Self::Target;
}

Listing 8-9: std::pin::Pin and its key methods

There’s a lot to unpack here, and we’re going to have to go over the 
definition in Listing 8-9 a few times before all the bits make sense, so please 
bear with me.

First, you’ll notice that Pin holds a pointer type. That is, rather than hold 
some T directly, it holds a type P that dereferences through Deref into T. This 
means that rather than have a Pin<MyType>, you’ll have a Pin<Box<MyType>> or 
Pin<Rc<MyType>> or Pin<&mut MyType>. The reason for this design is simple—
Pin’s primary goal is to make sure that once you place a T behind a Pin, that 
T won’t move, as doing so might invalidate self-references stored in the T. If 
the Pin just held a T directly, then simply moving the Pin would be enough to 
invalidate that invariant! In the remainder of this section, I’ll refer to P as 
the pointer type and T as the target type.

Next, notice that Pin’s constructor, new_unchecked, is unsafe. This is 
because the compiler has no way to actually check that the pointer type 
indeed promises that the pointed-to (target) type won’t move again. Con-
sider, for example, a variable foo on the stack. If Pin’s constructor were safe, 
we could do Pin::new(&mut foo), call a method that requires Pin<&mut Self> 
(and thus assumes that Self won’t move again), and then drop the Pin. At 
this point, we could modify foo as much as we liked, since it is no longer 
borrowed—including moving it! We could then pin it again and call the 
same method, which would be none the wiser that any self-referential point-
ers it may have constructed the first time around would now be invalid.
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PIN CONS T RUC TOR SA F E T Y

The other reason the constructor for Pin is unsafe is that its safety depends on 
the implementation of traits that are themselves safe . For example, the way 
that Pin<P> implements get_unchecked_mut is to use the implementation of 
DerefMut::deref_mut for P . While the call to get_unchecked_mut is unsafe, the 
impl DerefMut for P is not . Yet it receives a &mut self, and can thus freely (and 
without unsafe code) move the T . The same thing applies to Drop . The safety 
requirement for Pin::new_unchecked is therefore not only that the pointer type 
will not let the target type be moved again (like in the Pin<&mut T> example), 
but also that its Deref, DerefMut, and Drop implementations do not move the 
pointed-to value behind the &mut self they receive .

We then get to the get_unchecked_mut method, which gives you a mutable 
reference to the T behind the Pin’s pointer type. This method is also unsafe, 
because once we give out a &mut T, the caller has to promise it won’t use 
that &mut T to move the T or otherwise invalidate its memory, lest any self-
references be invalidated. If this method weren’t unsafe, a caller could 
call a method that takes Pin<&mut Self> and then call the safe variant of 
get_unchecked_mut on two Pin<&mut _>s, then use mem::swap to swap the values 
behind the Pin. If we were to then call a method that takes Pin<&mut Self> 
again on either Pin, its assumption that the Self hasn’t moved would be vio-
lated, and any internal references it stored would be invalid!

Perhaps surprisingly, Pin<P> always implements Deref<Target = T>, and 
that is entirely safe. The reason for this is that a &T does not let you move T 
without writing other unsafe code (UnsafeCell, for example, as we’ll discuss 
in Chapter 9). This is a good example of why the scope of an unsafe block 
extends beyond just the code it contains. If you wrote some code in one part 
of the application that (unsafely) replaced a T behind an & using UnsafeCell, 
then it could be that that &T initially came from a Pin<&mut T>, and that you 
have now violated the invariant that the T behind the Pin may never move, 
even though the place where you unsafely replaced the &T did not even men-
tion Pin!

N O T E  If you’ve browsed through the Pin documentation while reading this chapter, you may 
have noticed Pin::set, which takes a &mut self and a <P as Deref>::Target and 
safely changes the value behind the Pin. This is possible because set does not return 
the value that was previously pinned—it simply drops it in place and stores the new 
value there instead. Therefore, it does not violate the pinning invariants: the old 
value was never accessed outside of a Pin after it was placed there.

Unpin: The Key to Safe Pinning

At this point you might ask: given that getting a mutable reference is unsafe 
anyway, why not have Pin hold a T directly? That is, rather than require an 
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indirection through a pointer type, you could instead make the contract 
for get_unchecked_mut that it is only safe to call if you haven’t moved the Pin. 
The answer to that question lies in a neat safe use of Pin that the pointer 
design enables. Recall that the whole reason we want Pin in the first place is 
so we can have target types that may contain references to themselves (like 
a generator) and give their methods a guarantee that the target type hasn’t 
moved and thus that internal self-references remain valid. Pin lets us use the 
type system to enforce that guarantee, which is great. But unfortunately, 
with the design so far, Pin is very unwieldy to work with. This is because it 
always requires unsafe code, even if you are working with a target type that 
doesn’t contain any self-references, and so doesn’t care whether it’s been 
moved or not.

This is where the marker trait Unpin comes into play. An implementation 
of Unpin for a type simply asserts that the type is safe to move out of a Pin 
when used as a target type. That is, the type promises that it will never use 
any of Pin’s guarantees about the referent not moving again when used as a 
target type, and thus those guarantees may be broken. Unpin is an auto-trait, 
like Send and Sync, and so is auto-implemented by the compiler for any type 
that contains only Unpin members. Only types that explicitly opt out of Unpin 
(like generators) and types that contain those types are !Unpin.

For target types that are Unpin, we can provide a much simpler safe 
interface to Pin, as shown in Listing 8-10.

impl<P> Pin<P> where P: Deref, P::Target: Unpin {
    pub fn new(pointer: P) -> Self;
}
impl<P> DerefMut for Pin<P> where P: DerefMut, P::Target: Unpin {
    fn deref_mut(&mut self) -> &mut Self::Target;
}

Listing 8-10: The safe API to Pin for Unpin target types

To make sense of the safe API in Listing 8-10, think about the safety 
requirements of the unsafe methods from Listing 8-9: the function 
Pin::new_unchecked is unsafe because the caller must promise that the ref-
erent cannot be moved outside of the Pin, and that the implementations 
of Deref, DerefMut, and Drop for the pointer type do not move the refer-
ent through the reference they receive. Those requirements are there to 
ensure that once we give out a Pin to a T, we never move that T again. But 
if the T is Unpin, it has declared that it does not care if it is moved even if it 
was previously pinned, so it’s fine if the caller does not satisfy any of those 
requirements! 

Similarly, get_unchecked_mut is unsafe because the caller must guarantee 
that it doesn’t move the T out of the &mut T—but with T: Unpin, T has declared 
that it’s fine being moved even after being pinned, so that safety require-
ment is no longer important. This means that for Pin<P> where P::Target: 
Unpin, we can simply provide safe variants of both those methods (DerefMut 
being the safe version of get_unchecked_mut). In fact, we can even provide a 
Pin::into_inner that simply gives back the owned P if the target type is Unpin, 
since the Pin is essentially irrelevant!
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Ways of Obtaining a Pin

With our new understanding of Pin and Unpin, we can now make progress 
toward using the new Future definition from Listing 8-8 that requires 
Pin<&mut Self>. The first step is to construct the required type. If the future 
type is Unpin, that step is easy—we just use Pin::new(&mut future). If it is not 
Unpin, we can pin the future in one of two main ways: by pinning to the 
heap or pinning to the stack.

Let’s start with pinning to the heap. The primary contract of Pin is that 
once something has been pinned, it cannot move. The pinning API takes 
care of honoring that contract for all methods and traits on Pin, so the main 
role of any function that constructs a Pin is to ensure that if the Pin itself 
moves, the referent value does not move too. The easiest way to ensure that is 
to place the referent on the heap, and then place just a pointer to the refer-
ent in the Pin. You can then move the Pin to your heart’s delight, but the tar-
get will remain where it was. This is the rationale behind the (safe) method 
Box::pin, which takes a T and returns a Pin<Box<T>>. There’s no magic to it; it 
simply asserts that Box follows the Pin constructor, Deref, and Drop contracts.

UNPIN BOX

While we’re on the topic of Box, take a look at the implementation of Unpin for 
Box . The Box type unconditionally implements Unpin for any T, even if that T is 
not Unpin . This might strike you as odd, given the earlier assertion that Unpin 
is an auto-trait that is generally implemented for a type only if all of the type’s 
members are also Unpin . Box is an exception to this for the same reason that it 
can provide a safe Pin constructor: if you move a Box<T>, you do not move the 
T . In other words, the unconditional implementation asserts that you can move a 
Box<T> out of a Pin even if T cannot be moved out of a Pin . Note, however, that 
this does not enable you to move a T that is !Unpin out of a Pin<Box<T>> .

The other option, pinning to the stack, is a little more involved, and at 
the time of writing requires a smidgen of unsafe code. We have to ensure 
that the pinned value cannot be accessed after the Pin with a &mut to it has 
been dropped. We accomplish that by shadowing the value as shown in the 
macro in Listing 8-11 or by using one of the crates that provide exactly this 
macro. One day it may even make it into the standard library!

macro_rules! pin_mut {
    ($var:ident) => {
        let mut $var = $var;
        let mut $var = unsafe { Pin::new_unchecked(&mut $var) };
    }
}

Listing 8-11: Macro for pinning to the stack
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By taking the name of the variable to pin to the stack, the macro 
ensures that the caller has the value it wants to pin somewhere on the 
stack already. The shadowing of $var ensures that the caller cannot drop 
the Pin and continue to use the unpinned value (which would breach the 
Pin  contract for any target type that’s !Unpin). By moving the value stored 
in $var, the macro also ensures that the caller cannot drop the $var bind-
ing the macro declarations without also dropping the original variable. 
Specifically, without that line, the caller could write (note the extra scope):

let foo = /* */; { pin_mut!(foo); foo.poll() }; foo.mut_self_method();

Here, we give a pinned instance of foo to poll, but then we later use a 
&mut to foo without a Pin, which violates the Pin contract. With the extra reas-
signment, on the other hand, that code would also move foo into the new 
scope, rendering it unusable after the scope ends.

Pinning on the stack therefore requires unsafe code, unlike Box::pin, 
but avoids the extra allocation that Box introduces and also works in no_std 
environments.

Back to the Future

We now have our pinned future, and we know what that means. But you 
may have noticed that none of this important pinning stuff shows up in 
most asynchronous code you write with async and await. And that’s because 
the compiler hides it from you.

Think back to when we discussed Listing 8-5, when I told you that 
<expr>.await desugars into something like:

loop { if let Poll::Ready(r) = expr.poll() { break r } else { yield } }

That was an ever-so-slight simplification because, as we’ve seen, you can 
call Future::poll only if you have a Pin<&mut Self> for the future. The desug-
aring is actually a bit more sophisticated, as shown in Listing 8-12.

1 match expr {
      mut pinned => loop {
        2 match unsafe { Pin::new_unchecked(&mut pinned) }.poll() {
              Poll::Ready(r) => break r,
              Poll::Pending => yield,
          }
    }
}

Listing 8-12: A more accurate desugaring of <expr>.await

The match 1 is a neat shorthand to not only ensure that the expan-
sion remains a valid expression, but also move the expression result into 
a variable that we can then pin on the stack. Beyond that, the main new 
addition is the call to Pin::new_unchecked 2. That call is safe because for the 
containing async block to be polled, it must already be pinned due to the 
signature of Future::poll. And the async block was polled for us to reach 
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the call to Pin::new_unchecked, so the generator state is pinned. Since pinned 
is stored in the generator that corresponds to the async block (it must be so 
that yield will resume correctly), we know that pinned will not move again. 
Furthermore, pinned is not accessible except through a Pin once we’re in the 
loop, so no code is able to move out of the value in pinned. Thus, we meet all 
the safety requirements of Pin::new_unchecked, and the code is safe.

Going to Sleep
We went pretty deep into the weeds with Pin, but now that we’re out the 
other side, there is another issue around futures that may have been mak-
ing your brain itch. If a call to Future::poll returns Poll::Pending, you need 
something to call poll again at a later time to check whether you can make 
progress yet. That something is usually called the executor. Your executor 
could be a simple loop that polls all the futures you are waiting on until 
they’ve all returned Poll::Ready, but that would burn a lot of CPU cycles you 
could probably have used for other, more useful things, like running your 
web browser. Instead, we want the executor to do whatever useful work it 
can do, and then go to sleep. It should stay asleep until one of the futures 
can make progress, and only then wake up to do another pass, before going 
to sleep again.

Waking Up
The condition that determines when to check back with a given future var-
ies widely. It might be “when a network packet arrives on this port,” “when 
the mouse cursor moves,” “when someone sends on this channel,” “when 
the CPU receives a particular interrupt,” or even “after this much time has 
passed.” On top of that, developers can write their own futures that wrap 
multiple other futures, and thus, they may have several wake-up conditions. 
Some futures may even introduce their own entirely custom wake events.

To accommodate these many use cases, Rust introduces the notion of  
a Waker: a way to wake the executor to signal that progress can be made. The 
Waker is what makes the whole machinery around futures work. The executor 
constructs a Waker that integrates with the mechanism the executor uses to 
go to sleep, and passes the Waker in to any Future it polls. How? With the addi-
tional parameter to Future::poll that I’ve hidden from you so far. Sorry about 
that. Listing 8-13 gives the final and true definition for Future—no more lies!

trait Future {
    type Output;
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;
}

Listing 8-13: The actual Future trait with Context

The &mut Context contains the Waker. The argument is a Context, not a 
Waker directly, so that we can augment the asynchronous ecosystem with 
additional context for futures should that be deemed necessary.
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The primary method on Waker is wake (and the by-reference variant wake 
_by_ref), which should be called when the future can again make progress. 
The wake method takes no arguments, and its effects are entirely defined 
by the executor that constructed the Waker. You see, Waker is secretly generic 
over the executor. Or, more precisely, whatever constructed the Waker gets to 
dictate what happens when Waker::wake is called, when a Waker is cloned, and 
when a Waker is dropped. This all happens through a manually implemented 
vtable, which functions similarly to the dynamic dispatch we discussed way 
back in Chapter 2. 

It’s a somewhat involved process to construct a Waker, and the mechan-
ics of it aren’t all that important for using one, but you can see the building 
blocks in the RawWakerVTable type in the standard library. It has a constructor 
that takes the function pointers for wake and wake_by_ref as well as Clone and 
Drop. The RawWakerVTable, which is usually shared among all of an executor’s 
wakers, is bundled up with a raw pointer intended to hold data specific to 
each Waker instance (like which future it’s for) and is turned into a RawWaker. 
That is in turn passed to Waker::from_raw to produce a safe Waker that can be 
passed to Future::poll.

Fulfilling the Poll Contract
So far we’ve skirted around what a future actually does with a Waker. The 
idea is fairly simple: if Future::poll returns Poll::Pending, it is the future’s 
responsibility to ensure that something calls wake on the provided Waker 
when the future is next able to make progress. Most futures uphold this 
property by returning Poll::Pending only if some other future also returned 
Poll::Pending; in this way, it trivially fulfills the contract of poll since the 
inner future must follow that same contract. But there can’t be turtles all 
the way down. At some point, you reach a future that does not poll other 
futures but instead does something like write to a network socket or attempt 
to receive on a channel. These are commonly referred to as leaf futures since 
they have no children. A leaf future has no inner future but instead directly 
represents some resource that may not yet be ready to return a result.

N O T E  The poll contract is the reason why the recursive poll call 6 back in Listing 8-4 is 
necessary for correctness.

Leaf futures typically come in one of two shapes: those that wait for 
events that originate within the same process (like a channel receiver), and 
those that wait for events external to the process (like a TCP packet read). 
Those that wait for internal events all tend to follow the same pattern: store 
the Waker where the code that will wake you up can find it, and have that 
code call wake on the Waker when it generates the relevant event. For example, 
consider a leaf future that has to wait for a message on an in-memory chan-
nel. It stores its Waker inside the part of the channel that is shared between 
the sender and the receiver and then returns Poll::Pending. When a sender 
later comes along and injects a message into the channel, it notices the Waker 
left there by the waiting receiver and calls wake on the Waker before returning 
from send. Now the receiver is awoken, and the poll contract is upheld.
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Leaf futures that deal with external events are more involved, as the 
code that generates the event they’re waiting for knows nothing of futures 
or wakers. Most often the generating code is the operating system kernel, 
which knows when a disk is ready or a timer expires, but it could also be 
a C library that invokes a callback into Rust when an operation completes 
or some other such external entity. A leaf future wrapping an external 
resource like this could spin up a thread that executes a blocking system 
call (or waits for the C callback) and then use the internal waking mecha-
nism, but that would be wasteful; you would spin up a thread every time 
an operation had to wait and be left with lots of single-use threads sitting 
around waiting for things.

Instead, executors tend to provide implementations of leaf futures 
that communicate behind the scenes with the executor to arrange for 
the appropriate interaction with the operating system. How exactly this 
is orchestrated depends on the executor and the operating system, but 
roughly speaking the executor keeps track of all the event sources that it 
should listen for the next time it goes to sleep. When a leaf future realizes 
it must wait for an external event, it updates that executor’s state (which it 
knows about since it’s provided by the executor crate) to include that exter-
nal event source alongside its Waker. When the executor can no longer make 
progress, it gathers all of the event sources the various pending leaf futures 
are waiting for and does a big blocking call to the operating system, telling 
it to return when any of the resources the leaf futures are waiting on have 
a new event. On Linux, this is usually achieved with the epoll system call; 
Windows, the BSDs, macOS, and pretty much every other operating system 
provide similar mechanisms. When that call returns, the executor calls wake 
on all the wakers associated with event sources that the operating system 
reported events for, and thus the poll contract is fulfilled.

N O T E  A reactor is the part of an executor that leaf futures register event sources with and 
that the executor waits on when it has no more useful work to do. It is possible to 
separate the executor and the reactor, though bundling them together often improves 
performance as the two can be co-optimized more readily.

A knock-on effect of the tight integration between leaf futures and 
the executor is that leaf futures from one executor crate often cannot be 
used with a different executor. Or at least, they cannot be used unless the 
leaf future’s executor is also running. When the leaf future goes to store 
its Waker and register the event source it’s waiting for, the executor it was 
built against needs to have that state set up and needs to be running so 
that the event source will actually be monitored and wake eventually called. 
There are ways around this, such as having leaf futures spawn an executor 
if one is not already running, but this is not always advisable as it means 
that an application can transparently end up with multiple executors run-
ning at the same time, which can reduce performance and mean you must 
inspect the state of multiple executors when debugging.

Library crates that wish to support multiple executors have to be generic 
over their leaf resources. For example, instead of using a particular executor’s 
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TcpStream or File future type, a library can store a generic T: AsyncRead + 
AsyncWrite. However, the ecosystem has yet to settle on exactly what these traits 
should look like and which traits are needed, so for the moment it’s fairly diffi-
cult to make code truly generic over the executor. For example, while AsyncRead 
and AsyncWrite are somewhat common across the ecosystem (or can be easily 
adapted if necessary), no traits currently exist for running a future in the 
background (spawning, which we’ll discuss later) or for representing a timer.

Waking Is a Misnomer
You may already have realized that Waker::wake doesn’t necessarily seem to 
wake anything. For example, for external events (as described in the previ-
ous section), the executor is already awake, and it might seem silly for it to 
then call wake on a Waker that belongs to that executor anyway! The reality is 
that Waker::wake is a bit of a misnomer—in reality, it signals that a particular 
future is runnable. That is, it tells the executor that it should make sure to 
poll this particular future when it gets around to it rather than go to sleep 
again, since this future can make progress. This might wake the executor if 
it is currently sleeping so it will go poll that future, but that’s more of a side 
effect than its primary purpose.

It is important for the executor to know which futures are runnable 
for two reasons. First, it needs to know when it can stop polling a future 
and go to sleep; it’s not sufficient to just poll each future until it returns 
Poll::Pending, since polling a later future might make it possible to progress 
an earlier future. Consider the case where two futures bounce messages 
back and forth on channels to one another. When you poll one, the other 
becomes ready, and vice versa. In this case, the executor should never go to 
sleep, as there is always more work to do.

Second, knowing which futures are runnable lets the executor avoid 
polling futures unnecessarily. If an executor manages thousands of pending 
futures, it shouldn’t poll all of them just because an event made one of them 
runnable. If it did, executing asynchronous code would get very slow indeed.

Tasks and Subexecutors
The futures in an asynchronous program form a tree: a future may contain 
any number of other futures, which in turn may contain other futures, all the 
way down to the leaf futures that interact with wakers. The root of each tree is 
the future you give to whatever the executor’s main “run” function is. These 
root futures are called tasks, and they are the only point of contact between 
the executor and the futures tree. The executor calls poll on the task, and 
from that point forward the code of each contained future must figure out 
which inner future(s) to poll in response, all the way down to the relevant leaf.

Executors generally construct a separate Waker for each task they poll so 
that when wake is later called, they know which task was just made runnable 
and can mark it as such. That is what the raw pointer in RawWaker is for—to dif-
ferentiate between tasks while sharing the code for the various Waker methods.

When the executor eventually polls a task, that task starts running from 
the top of its implementation of Future::poll and must decide from there how 
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to get to the future deeper down that can now make progress. Since each 
future knows only about its own fields, and nothing about the whole tree, this 
all happens through calls to poll that each traverse one edge in the tree.

The choice of which inner future to poll is often obvious, but not always. 
In the case of async/await, the future to poll is the one we’re blocked waiting 
for. But in a future that waits for the first of several futures to make prog-
ress (often called a select), or for all of a set of futures (often called a join), 
there are many options. A future that has to make such a choice is basically 
a subexecutor. It could poll all of its inner futures, but doing so could be 
quite wasteful. Instead, these subexecutors often wrap the Waker they receive 
in poll’s Context with their own Waker type before they invoke poll on any 
inner future. In the wrapping code, they mark the future they just polled as 
runnable in their own state before they call wake on the original Waker. That 
way, when the executor eventually polls the subexecutor future again, the 
subexecutor can consult its own internal state to figure out which of its inner 
futures caused the current call to poll, and then only poll those.

BLOCKING IN A S Y NC CODE

You must be careful about calling synchronous code from asynchronous code, 
since any time an executor thread spends executing the current task is time it’s 
not spending running other tasks . If a task occupies the current thread for a 
prolonged period of time without yielding back to the executor, which might 
happen when executing a blocking system call (like std::sync::sleep), running 
a subexecutor that doesn’t yield occasionally, or running in a tight loop with no 
awaits, then other tasks the current executor thread is responsible for won’t get 
to run during that time . Usually, this manifests as long delays between when 
certain tasks can make progress (such as when a client connects) and when 
they actually get to execute .

Some multithreaded executors implement work-stealing techniques, where 
idle executor threads steal tasks from busy executor threads, but this is more of 
a mitigation than a solution . Ultimately, you could end up in a situation where 
all the executor threads are blocked, and thus no tasks get run until one of the 
blocking operations completes .

In general, you should be very careful with executing compute-intensive 
operations or calling functions that could block in an asynchronous context . 
Such operations should either be converted to asynchronous operations where 
possible or executed on dedicated threads that then communicate using a 
primitive that does support asynchrony, like a channel . Some executors also 
provide mechanisms for indicating that a particular segment of asynchronous 
code might block or for yielding voluntarily in the context of loops that might 
otherwise not yield, which can compose part of the solution . A good rule of 
thumb is that no future should be able to run for more than 1 ms without return-
ing Poll::Pending .
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Tying It All Together with spawn
When working with asynchronous executors, you may come across an 
operation that spawns a future. We’re now in a position to explore what 
that means! Let’s do so by way of example. First, consider the simple server 
implementation in Listing 8-14.

async fn handle_client(socket: TcpStream) -> Result<()> {
    // Interact with the client over the given socket.
}

async fn server(socket: TcpListener) -> Result<()> {
    while let Some(stream) = socket.accept().await? {
        handle_client(stream).await?;
    }
}

Listing 8-14: Handling connections sequentially

The top-level server function is essentially one big future that listens 
for new connections and does something when a new connection arrives. 
You hand that future to the executor and say “run this,” and since you don’t 
want your program to then exit immediately, you’ll probably have the exec-
utor block on that future. That is, the call to the executor to run the server 
future will not return until the server future resolves, which may be never 
(another client could always arrive later).

Now, every time a new client connection comes in, the code in 
Listing 8-14 makes a new future (by calling handle_client) to handle that 
connection. Since the handling is itself a future, we await it and then move 
on to the next client connection.

The downside of this approach is that we only ever handle one connec-
tion at a time—there is no concurrency. Once the server accepts a connec-
tion, the handle_client function is called, and since we await it, we don’t go 
around the loop again until handle_client’s return future resolves (presum-
ably when that client has left).

We could improve on this by keeping a set of all the client futures and 
having the loop in which the server accepts new connections also check all 
the client futures to see if any can make progress. Listing 8-15 shows what 
that might look like.

async fn server(socket: TcpListener) -> Result<()> {
    let mut clients = Vec::new();
    loop {
        poll_client_futures(&mut clients)?;
        if let Some(stream) = socket.try_accept()? {
            clients.push(handle_client(stream));
        }
    }
}

Listing 8-15: Handling connections with a manual executor
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This at least handles many connections concurrently, but it’s quite 
convoluted. It’s also not very efficient because the code now busy-loops, 
switching between handling the connections we already have and accept-
ing new ones. And it has to check each connection each time, since it won’t 
know which ones can make progress (if any). It also can’t await at any point, 
since that would prevent the other futures from making progress. You could 
implement your own wakers to ensure that the code polls only the futures 
that can make progress, but ultimately this is going down the path of devel-
oping your own mini-executor.

Another downside of sticking with just the one task for the server that 
internally contains the futures for all of the client connections is that the 
server ends up being single-threaded. There is just the one task and to poll 
it the code must hold an exclusive reference to the task’s future (poll takes 
Pin<&mut Self>), which only one thread can hold at a time.

The solution is to make each client future its own task and leave it to 
the executor to multiplex among all the tasks. Which, you guessed it, you 
do by spawning the future. The executor will continue to block on the 
server future, but if it cannot make progress on that future, it will use its 
execution machinery to make progress on the other tasks in the meantime 
behind the scenes. And best of all, if the executor is multithreaded and 
your client futures are Send, it can run them in parallel since it can hold 
&muts to the separate tasks concurrently. Listing 8-16 gives an example of 
what this might look like.

async fn server(socket: TcpListener) -> Result<()> {
    while let Some(stream) = socket.accept().await? {
        // Spawn a new task with the Future that represents this client.
        // The current task will continue to just poll for more connections
        // and will run concurrently (and possibly in parallel) with handle_client.
        spawn(handle_client(stream));
    }
}

Listing 8-16: Spawning futures to create more tasks that can be polled concurrently

When you spawn a future and thus make it a task, it’s sort of like spawn-
ing a thread. The future continues running in the background and is mul-
tiplexed concurrently with any other tasks given to the executor. However, 
unlike a spawned thread, spawned tasks still depend on being polled by 
the executor. If the executor stops running, either because you drop it or 
because your code no longer runs the executor’s code, those spawned tasks 
will stop making progress. In the server example, imagine what will hap-
pen if the main server future resolves for some reason. Since the executor 
has returned control back to your code, it cannot continue doing, well, 
anything. Multi-threaded executors often spawn background threads that 
continue to poll tasks even if the executor yields control back to the user’s 
code, but not all executors do this, so check your executor before you rely 
on that behavior!
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Summary
In this chapter, we’ve taken a look behind the scenes of the asynchronous 
constructs available in Rust. We’ve seen how the compiler implements gen-
erators and self-referential types, and why that work was necessary to sup-
port what we now know as async/await. We’ve also explored how futures are 
executed, and how wakers allow executors to multiplex among tasks when 
only some of them can make progress at any given moment. In the next 
chapter, we’ll tackle what is perhaps the deepest and most discussed area 
of Rust: unsafe code. Take a deep breath, and then turn the page.



9
U N S A F E  C O D E

The mere mention of unsafe code often 
elicits strong responses from many in the 

Rust community, and from many of those 
watching Rust from the sidelines. While some 

maintain it’s “no big deal,” others decry it as “the rea-
son all of Rust’s promises are a lie.” In this chapter,  
I hope to pull back the curtain a bit to explain what unsafe is, what it isn’t, 
and how you should go about using it safely. At the time of writing, and 
likely also when you read this, Rust’s precise requirements for unsafe code 
are still being determined, and even if they were all nailed down, the com-
plete description would be beyond the scope of this book. Instead, I’ll do 
my best to arm you with the building blocks, intuition, and tooling you’ll 
need to navigate your way through most unsafe code.

Your main takeaway from this chapter should be this: unsafe code is the 
mechanism Rust gives developers for taking advantage of invariants that, 
for whatever reason, the compiler cannot check. We’ll look at the ways in 
which unsafe does that, what those invariants may be, and what we can do 
with it as a result.
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IN VA R I A N T S

Throughout this chapter, I’ll be talking a lot about invariants . Invariant is just a 
fancy way of saying “something that must be true for your program to be cor-
rect .” For example, in Rust, one invariant is that references, using & and &mut, 
do not dangle—they always point to valid values . You can also have applica-
tion- or library-specific invariants, like “the head pointer is always ahead of the 
tail pointer” or “the capacity is always a power of two .” Ultimately, invariants 
represent all the assumptions required for your code to be correct . However, 
you may not always be aware of all the invariants that your code uses, and 
that’s where bugs creep in .

Crucially, unsafe code is not a way to skirt the various rules of Rust, like 
borrow checking, but rather a way to enforce those rules using reasoning 
that is beyond the compiler. When you write unsafe code, the onus is on 
you to ensure that the resulting code is safe. In a way, unsafe is misleading 
as a keyword when it is used to allow unsafe operations through unsafe {}; 
it’s not that the contained code is unsafe, it’s that the code is allowed to per-
form otherwise unsafe operations because in this particular context, those 
operations are safe.

The rest of this chapter is split into four sections. We’ll start with a brief 
examination of how the keyword itself is used, then explore what unsafe 
allows you to do. Next, we’ll look at the rules you must follow in order to 
write safe unsafe code. Finally, I’ll give you some advice about how to actu-
ally go about writing unsafe code safely.

The unsafe Keyword
Before we discuss the powers that unsafe grants you, we need to talk about 
its two different meanings. The unsafe keyword serves a dual purpose in 
Rust: it marks a particular function as unsafe to call and it enables you to 
invoke unsafe functionality in a particular code block. For example, the 
method in Listing 9-1 is marked as unsafe, even though it contains no 
unsafe code. Here, the unsafe keyword serves as a warning to the caller that 
there are additional guarantees that someone who writes code that invokes 
decr must manually check.

impl<T> SomeType<T> {
    pub unsafe fn decr(&self) {
        self.some_usize -= 1;
    }
}

Listing 9-1: An unsafe method that contains only safe code
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Listing 9-2 illustrates the second usage. Here, the method itself is not 
marked as unsafe, even though it contains unsafe code.

impl<T> SomeType<T> {
    pub fn as_ref(&self) -> &T {
        unsafe { &*self.ptr }
    }
}

Listing 9-2: A safe method that contains unsafe code

These two listings differ in their use of unsafe because they embody 
different contracts. decr requires the caller to be careful when they call the 
method, whereas as_ref assumes that the caller was careful when invoking 
other unsafe methods (like decr). To see why, imagine that SomeType is really 
a reference-counted type like Rc. Even though decr only decrements a num-
ber, that decrement may in turn trigger undefined behavior through the 
safe method as_ref. If you call decr and then drop the second-to-last Rc of a 
given T, the reference count drops to zero and the T will be dropped—but 
the program might still call as_ref on the last Rc, and end up with a dan-
gling reference.

N O T E  Undefined behavior describes the consequences of a program that violates invari-
ants of the language at runtime. In general, if a program triggers undefined behav-
ior, the outcome is entirely unpredictable. We’ll cover undefined behavior in greater 
detail later in this chapter.

Conversely, as long as there is no way to corrupt the Rc reference count 
using safe code, it is always safe to dereference the pointer inside the Rc 
the way the code for as_ref does—the fact that &self exists is proof that the 
pointer must still be valid. We can use this to give the caller a safe API to 
an otherwise unsafe operation, which is a core piece of how to use unsafe 
responsibly.

For historical reasons, every unsafe fn contains an implicit unsafe block 
in Rust today. That is, if you declare an unsafe fn, you can always invoke any 
unsafe methods or primitive operations inside that fn. However, that deci-
sion is now considered a mistake, and it’s currently being reverted through 
the already accepted and implemented RFC 2585. This RFC warns about 
having an unsafe fn that performs unsafe operations without an explicit 
unsafe block inside it. The lint will also likely become a hard error in future 
editions of Rust. The idea is to reduce the “footgun radius”—if every unsafe 
fn is one giant unsafe block, then you might accidentally perform unsafe 
operations without realizing it! For example, in decr in Listing 9-1, under 
the current rules you could also have added *std::ptr::null() without any 
unsafe annotation.

The distinction between unsafe as a marker and unsafe blocks as a 
mechanism to enable unsafe operations is important, because you must 
think about them differently. An unsafe fn indicates to the caller that 
they have to be careful when calling the fn in question and that they must 
ensure that the function’s documented safety invariants hold.
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Meanwhile, an unsafe block implies that whoever wrote that block care-
fully checked that the safety invariants for any unsafe operations performed 
inside it hold. If you want an approximate real-world analogy, unsafe fn is an 
unsigned contract that asks the author of calling code to “solemnly swear X, 
Y, and Z.” Meanwhile, unsafe {} is the calling code’s author signing off on all 
the unsafe contracts contained within the block. Keep that in mind as we 
go through the rest of this chapter.

Great Power
So, once you sign the unsafe contract with unsafe {}, what are you allowed 
to do? Honestly, not that much. Or rather, it doesn’t enable that many new 
features. Inside an unsafe block, you are allowed to dereference raw point-
ers and call unsafe fns.

That’s it. Technically, there are a few other things you can do, like 
accessing mutable and external static variables and accessing fields of 
unions, but those don’t change the discussion much. And honestly, that’s 
enough. Together, these powers allow you to wreak all sorts of havoc, like 
turning types into one another with mem::transmute, dereferencing raw point-
ers that point to who knows where, casting &'a to &'static, or making types 
shareable across thread boundaries even though they’re not thread-safe.

In this section, we won’t worry too much about what can go wrong with 
these powers. We’ll leave that for the boring, responsible, grown-up section 
that comes after. Instead, we’ll look at these neat shiny new toys and what 
we can do with them.

Juggling Raw Pointers
One of the most fundamental reasons to use unsafe is to deal with Rust’s raw 
pointer types: *const T and *mut T. You should think of these as more or less 
analogous to &T and &mut T, except that they don’t have lifetimes and are not 
subject to the same validity rules as their & counterparts, which we’ll discuss 
later in the chapter. These types are interchangeably referred to as point-
ers and raw pointers, mostly because many developers instinctively refer to 
references as pointers, and calling them raw pointers makes the distinction 
clearer.

Since fewer rules apply to * than &, you can cast a reference to a pointer 
even outside an unsafe block. Only if you want to go the other way, from * 
to &, do you need unsafe. You’ll generally turn a pointer back into a refer-
ence to do useful things with the pointed-to data, such as reading or modi-
fying its value. For that reason, a common operation to use on pointers is 
unsafe { &*ptr } (or &mut *). The * there may look strange as the code is just 
constructing a reference, not dereferencing the pointer, but it makes sense 
if you look at the types; if you have a *mut T and want a &mut T, then &mut ptr 
would just give you a &mut *mut T. You need the * to indicate that you want 
the mutable reference to what ptr is a pointer to.
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POIN T ER T Y PES

You may be wondering what the difference is between *mut T and *const T 
and std::ptr::NonNull<T> . Well, the exact specification is still being worked 
out, but the primary practical difference between *mut T and *const T/
NonNull<T> is that *mut T is invariant in T (see “Lifetime Variance” in Chapter 1), 
whereas the other two are covariant . As the names imply, *const T and 
NonNull<T> differ primarily in that NonNull<T> is not allowed to be a null pointer, 
whereas *const T is .

My best advice in choosing among these types is to use your intuition 
about whether you would have written &mut or & if you were able to name the 
relevant lifetime . If you would have written &, and you know that the pointer is 
never null, use NonNull<T> . It benefits from a cool optimization called the niche 
optimization: basically, since the compiler knows that the type can never be 
null, it can use that information to represent types like Option<NonNull<T>> with-
out any extra overhead, since the None case can be represented by setting the 
NonNull to be a null pointer! The null pointer value is a niche in the NonNull<T> 
type . If the pointer might be null, use *const T . And if you would have written 
&mut T, use *mut T .

Unrepresentable Lifetimes

As raw pointers do not have lifetimes, they can be used in circumstances 
where the liveness of the value being pointed to cannot be expressed stati-
cally within Rust’s lifetime system, such as a self-pointer in a self-referential 
struct like the generators we discussed in Chapter 8. A pointer that points 
into self is valid for as long as self is around (and doesn’t move, which is 
what Pin is for), but that isn’t a lifetime you can generally name. And while 
the entire self-referential type may be 'static, the self-pointer isn’t—if it 
were static, then even if you gave away that pointer to someone else, they 
could continue to use it forever, even after self was gone! Take the type in 
Listing 9-3 as an example; here we attempt to store the raw bytes that make 
up a value alongside its stored representation.

struct Person<'a> {
    name: &'a str,
    age: usize,
}
struct Parsed {
    bytes: [u8; 1024],
    parsed: Person<'???>,
}

Listing 9-3: Trying, and failing, to name the lifetime of a self-referential reference



146   Chapter 9

The reference inside Person wants to refer to data stored in bytes in 
Parsed, but there is no lifetime we can assign to that reference from Parsed. 
It’s not 'static or something like 'self (which doesn’t exist), because if 
Parsed is moved, the reference is no longer valid.

Since pointers do not have lifetimes, they circumvent this problem 
because you don’t have to be able to name the lifetime. Instead, you just have 
to make sure that when you do use the pointer, it’s still valid, which is what you 
sign off on when you write unsafe { &*ptr }. In the example in Listing 9-3, 
Person would instead store a *const str and then unsafely turn that into a &str 
at the appropriate times when it can guarantee that the pointer is still valid.

A similar issue arises with a type like Arc, which has a pointer to a value 
that’s shared for some duration, but that duration is known only at runtime 
when the last Arc is dropped. The pointer is kind-of, sort-of 'static, but not 
really—like in the self-referential case, the pointer is no longer valid when 
the last Arc reference goes away, so the lifetime is more like 'self. In Arc’s 
cousin, Weak, the lifetime is also “when the last Arc goes away,” but since a 
Weak isn’t an Arc, the lifetime isn’t even tied to self. So, Arc and Weak both 
use raw pointers internally.

Pointer Arithmetic

With raw pointers, you can do arbitrary pointer arithmetic, just like you 
can in C, by using .offset(), .add(), and .sub() to move the pointer to any 
byte that lives within the same allocation. This is most often used in highly 
space-optimized data structures, like hash tables, where storing an extra 
pointer for each element would add too much overhead and using slices 
isn’t possible. Those are fairly niche use cases, and we won’t be talking 
more about them in this book, but I encourage you to read the code for 
hashbrown::RawTable (https://github.com/rust-lang/hashbrown/) if you want to 
learn more!

The pointer arithmetic methods are unsafe to call even if you don’t 
want to turn the pointer into a reference afterwards. There are a couple 
of reasons for this, but the main one is that it is illegal to make a pointer 
point beyond the end of the allocation that it originally pointed to. Doing 
so triggers undefined behavior, and the compiler is allowed to decide to 
eat your code and replace it with arbitrary nonsense that only a compiler 
could understand. If you do use these methods, read the documentation 
carefully!

To Pointer and Back Again

Often when you need to use pointers, it’s because you have some normal 
Rust type, like a reference, a slice, or a string, and you have to move to the 
world of pointers for a bit and then go back to the original normal type. 
Some of the key standard library types therefore provide you with a way to 
turn them into their raw constituent parts, such as a pointer and a length 
for a slice, and a way to turn them back into the whole using those same 
parts. For example, you can get a slice’s data pointer with as_ptr and its 
length with []::len. You can then reconstruct the slice by providing those 

https://github.com/rust-lang/hashbrown/
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same values to std::slice::from_raw_parts. Vec, Arc, and String have similar 
methods that return a raw pointer to the underlying allocation, and Box has 
Box::into_raw and Box::from_raw, which do the same thing.

Playing Fast and Loose with Types

Sometimes, you have a type T and want to treat it as some other type U. 
Whether that’s because you need to do lightning-fast zero-copy parsing 
or because you need to fiddle with some lifetimes, Rust provides you with 
some (very unsafe) tools to do so.

The first and by far most widely used of these is pointer casting: you can 
cast a *const T to any other *const U (and the same for mut), and you don’t 
even need unsafe to do it. The unsafety comes into play only when you later 
try to use the cast pointer as a reference, as you have to assert that the raw 
pointer can in fact be used as a reference to the type it’s pointing to.

This kind of pointer type casting comes in particularly handy when work-
ing with foreign function interfaces (FFI)—you can cast any Rust pointer to a 
*const std::ffi::c_void or *mut std::ffi::c_void, and then pass that to a C func-
tion that expects a void pointer. Similarly, if you get a void pointer from C that 
you previously passed in, you can trivially cast it back into its original type.

Pointer casts are also useful when you want to interpret a sequence 
of bytes as plain old data—types like integers, Booleans, characters, and 
arrays, or #[repr(C)] structs of these—or write such types directly out as a 
byte stream without serialization. There are a lot of safety invariants to keep 
in mind if you want to try to do that, but we’ll leave that for later.

Calling Unsafe Functions
Arguably unsafe’s most commonly used feature is that it enables you to 
call unsafe functions. Deeper down the stack, most of those functions are 
unsafe because they operate on raw pointers at some fundamental level, but 
higher up the stack you tend to interact with unsafety primarily through 
function calls.

There’s really no limit to what calling an unsafe function might enable, 
as it is entirely up to the libraries you interact with. But in general, unsafe 
functions can be divided into three camps: those that interact with non-
Rust interfaces, those that skip safety checks, and those that have custom 
invariants.

Foreign Function Interfaces

Rust lets you declare functions and static variables that are defined in a 
language other than Rust using extern blocks (which we’ll discuss at length 
in Chapter 11). When you declare such a block, you’re telling Rust that the 
items appearing within it will be implemented by some external source when 
the final program binary is linked, such as a C library you are integrating 
with. Since externs exist outside of Rust’s control, they are inherently unsafe 
to access. If you call a C function from Rust, all bets are off—it might over-
write your entire memory contents and clobber all your neatly arranged 
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references into random pointers into the kernel somewhere. Similarly, an 
extern static variable could be modified by external code at any time, and 
could be filled with all sorts of bad bytes that don’t reflect its declared type 
at all. In an unsafe block, though, you can access externs to your heart’s 
delight, as long as you’re willing to vouch for the other side of the extern 
behaving according to Rust’s rules.

I’ll Pass on Safety Checks

Some unsafe operations can be made entirely safe by introducing addi-
tional runtime checks. For example, accessing an item in a slice is unsafe 
since you might try to access an item beyond the length of the slice. But, 
given how common the operation is, it’d be unfortunate if indexing into a 
slice was unsafe. Instead, the safe implementation includes bounds checks 
that (depending on the method you use) either panic or return an Option if 
the index you provide is out of bounds. That way, there is no way to cause 
undefined behavior even if you pass in an index beyond the slice’s length. 
Another example is in hash tables, which hash the key you provide rather 
than letting you provide the hash yourself; this ensures that you’ll never try 
to access a key using the wrong hash.

However, in the endless pursuit of ultimate performance, some develop-
ers may find these safety checks add just a little too much overhead in their 
tightest loops. To cater to situations where peak performance is paramount 
and the caller knows that the indexes are in bounds, many data struc-
tures provide alternate versions of particular methods without these safety 
checks. Such methods usually include the word unchecked in the name to 
indicate that they blindly trust the provided arguments to be safe and that 
they do not do any of those pesky, slow safety checks. Some examples are 
NonNull::new_unchecked, slice::get_unchecked, NonZero::new_unchecked, Arc::get 
_mut_unchecked, and str::from_utf8_unchecked.

In practice, the safety and performance trade-off for unchecked meth-
ods is rarely worth it. As always with performance optimization, measure 
first, then optimize.

Custom Invariants

Most uses of unsafe rely on custom invariants to some degree. That is, they 
rely on invariants beyond those provided by Rust itself, which are specific to 
the particular application or library. Since so many functions fall into this 
category, it’s hard to give a good general summary of this class of unsafe 
functions. Instead, I’ll give some examples of unsafe functions with custom 
invariants that you may come across in practice and want to use:

MaybeUninit::assume_init

The MaybeUninit type is one of the few ways in which you can store 
values that are not valid for their type in Rust. You can think of a 
MaybeUninit<T> as a T that may not be legal to use as a T at the moment. 
For example, a MaybeUninit<NonNull> is allowed to hold a null pointer, 
a MaybeUninit<Box> is allowed to hold a dangling heap pointer, and a 
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MaybeUninit<bool> is allowed to hold the bit pattern for the number 3 
(normally it must be 0 or 1). This comes in handy if you are construct-
ing a value bit by bit or are dealing with zeroed or uninitialized mem-
ory that will eventually be made valid (such as by being filled through 
a call to std::io::Read::read). The assume_init function asserts that the 
MaybeUninit now holds a valid value for the type T and can therefore be 
used as a T.

ManuallyDrop::drop

The ManuallyDrop type is a wrapper type around a type T that does not 
drop that T when the ManuallyDrop is dropped. Or, phrased differently, it 
decouples the dropping of the outer type (ManuallyDrop) from the drop-
ping of the inner type (T). It implements safe access to the T through 
DerefMut<Target = T> but also provides a drop method (separately from 
the drop method of the Drop trait) to drop the wrapped T without drop-
ping the ManuallyDrop. That is, the drop function takes &mut self despite 
dropping the T, and so leaves the ManuallyDrop behind. This comes in 
handy if you have to explicitly drop a value that you cannot move, such 
as in implementations of the Drop trait. Once that value is dropped, it 
is no longer safe to try to access the T, which is why the call to drop is 
unsafe—it asserts that the T will never be accessed again.

std::ptr::drop_in_place

drop_in_place lets you call a value’s destructor directly through a pointer 
to that value. This is unsafe because the pointee will be left behind 
after the call, so if some code then tries to dereference the pointer, it’ll 
be in for a bad time! This method is particularly useful when you may 
want to reuse memory, such as in an arena allocator, and need to drop 
an old value in place without reclaiming the surrounding memory.

Waker::from_raw

In Chapter 8 we talked about the Waker type and how it is made up of a 
data pointer and a RawWaker that holds a manually implemented vtable. 
Once a Waker has been constructed, the raw function pointers in the 
vtable, such as wake and drop, can be called from safe code (through 
Waker::wake and drop(waker), respectively). Waker::from_raw is where the 
asynchronous executor asserts that all the pointers in its vtable are 
in fact valid function pointers that follow the contract set forth in the 
documentation of RawWakerVTable.

std::hint::unreachable_unchecked

The hint module holds functions that give hints to the compiler about 
the surrounding code but do not actually produce any machine code. 
The unreachable_unchecked function in particular tells the compiler that it 
is impossible for the program to reach a section of the code at runtime. 
This in turn allows the compiler to make optimizations based on that 
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knowledge, such as eliminating conditional branches to that location. 
Unlike the unreachable! macro, which panics if the code does reach the 
line in question, the effects of an erroneous unreachable_unchecked are 
hard to predict. The compiler optimizations may cause peculiar and 
hard-to-debug behavior, not to mention that your program will continue 
running when something it believed to be true was not!

std::ptr::{read,write}_{unaligned,volatile}

The ptr module holds a number of functions that let you work with odd 
pointers—those that do not meet the assumptions that Rust generally 
makes about pointers. The first of these functions are read_unaligned and 
write_unaligned, which let you access pointers that point to a T even if 
that T is not stored according to T’s alignment (see the section on align-
ment in Chapter 2). This might happen if the T is contained directly in 
a byte array or is otherwise packed in with other values without proper 
padding. The second notable pair of functions is read_volatile and 
write_volatile, which let you operate on pointers that don’t point to 
normal memory. Concretely, these functions will always access the given 
pointer (they won’t be cached in a register, for example, even if you 
read the same pointer twice in a row), and the compiler won’t reorder 
the volatile accesses relative to other volatile accesses. Volatile opera-
tions come in handy when working with pointers that aren’t backed 
by normal DRAM memory—we’ll discuss this further in Chapter 11. 
Ultimately, these methods are unsafe because they dereference the 
given pointer (and to an owned T, at that), so you as the caller need to 
sign off on all the contracts associated with doing so.

std::thread::Builder::spawn_unchecked

The normal thread::spawn that we know and love requires that the 
provided closure is 'static. That bound stems from the fact that the 
spawned thread might run for an indeterminate amount of time; if 
we were allowed to use a reference to, say, the caller’s stack, the caller 
might return well before the spawned thread exits, rendering the ref-
erence invalid. Sometimes, however, you know that some non-'static 
value in the caller will outlive the spawned thread. This might happen 
if you join the thread before dropping the value in question, or if the 
value is dropped only strictly after you know the spawned thread will 
no longer use it. That’s where spawn_unchecked comes in—it does not 
have the 'static bound and thus lets you implement those use cases as 
long as you’re willing to sign the contract saying that no unsafe accesses 
will happen as a result. Be careful of panics, though; if the caller pan-
ics, it might drop values earlier than you planned and cause undefined 
behavior in the spawned thread!

Note that all of these methods (and indeed all unsafe methods in the 
standard library) provide explicit documentation for their safety invariants, 
as should be the case for any unsafe method.
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Implementing Unsafe Traits
Unsafe traits aren’t unsafe to use, but unsafe to implement. This is because 
unsafe code is allowed to rely on the correctness (defined by the trait’s doc-
umentation) of the implementation of unsafe traits. For example, to imple-
ment the unsafe trait Send, you need to write unsafe impl Send for .... Like 
unsafe functions, unsafe traits generally have custom invariants that are (or 
at least should be) specified in the documentation for the trait. Thus, it’s 
difficult to cover unsafe traits as a group, so here too I’ll give some common 
examples from the standard library that are worth going over.

Send and Sync

The Send and Sync traits denote that a type is safe to send or share across 
thread boundaries, respectively. We’ll talk more about these traits in 
Chapter 10, but for now what you need to know is that they are auto-traits, 
and so they’ll usually be implemented for most types for you by the com-
piler. But, as tends to be the case with auto-traits, Send and Sync will not be 
implemented if any members of the type in question are not themselves Send 
or Sync.

In the context of unsafe code, this problem occurs primarily due to 
raw pointers, which are neither Send nor Sync. At first glance, this might 
seem reasonable: the compiler has no way to know who else may have a raw 
pointer to the same value or how they may be using it at the moment, so 
how can the type be safe to send across threads? Now that we’re seasoned 
unsafe developers though, that argument seems weak—after all, dereferenc-
ing a raw pointer is already unsafe, so why should handling the invariants of 
Send and Sync be any different?

Strictly speaking, raw pointers could be both Send and Sync. The prob-
lem is that if they were, the types that contain raw pointers would auto-
matically be Send and Sync themselves, even though their author might not 
realize that was the case. The developer might then unsafely dereference 
the raw pointers without ever thinking about what would happen if those 
types were sent or shared across thread boundaries, and thus inadvertently 
introduce undefined behavior. Instead, the raw pointer types block these 
automatic implementations as an additional safeguard to unsafe code to 
make authors explicitly sign the contract that they have also followed the 
Send and Sync invariants.

N O T E  A common mistake with unsafe implementations of Send and Sync is to forget to add 
bounds to generic parameters: unsafe impl<T: Send> Send for MyUnsafeType<T> {}.

GlobalAlloc

The GlobalAlloc trait is how you implement a custom memory allocator 
in Rust. We won’t talk too much about that topic in this book, but the 
trait itself is interesting. Listing 9-4 gives the required methods for the 
GlobalAlloc trait.
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pub unsafe trait GlobalAlloc {
    pub unsafe fn alloc(&self, layout: Layout) -> *mut u8;
    pub unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout);
}

Listing 9-4: The GlobalAlloc trait with its required methods

At its core, the trait has one method for allocating a new chunk of 
memory, alloc, and one for deallocating a chunk of memory, dealloc. The 
Layout argument describes the type’s size and alignment, as we discussed in 
Chapter 2. Each of those methods is unsafe and carries a number of safety 
invariants that its callers must uphold.

 GlobalAlloc itself is also unsafe because it places restrictions on the 
implementer of the trait, not the caller of its methods. Only the unsafety 
of the trait ensures that implementers agree to uphold the invariants that 
Rust itself assumes of its memory allocator, such as in the standard library’s 
implementation of Box. If the trait was not unsafe, an implementer could 
safely implement GlobalAlloc in a way that produced unaligned pointers or 
incorrectly sized allocations, which would trigger unsafety in otherwise safe 
code that assumes that allocations are sane. This would break the rule that 
safe code should not be able to trigger memory unsafety in other safe code, 
and thus cause all sorts of mayhem.

Surprisingly Not Unpin

The Unpin trait is not unsafe, which comes as a surprise to many Rust devel-
opers. It may even come as a surprise to you after reading Chapter 8. After 
all, the trait is supposed to ensure that self-referential types aren’t invali-
dated if they’re moved after they have established internal pointers (that is, 
after they’ve been placed in a Pin). It seems strange, then, that Unpin can be 
used to safely remove a type from a Pin.

There are two main reasons why Unpin isn’t an unsafe trait. First, it’s 
unnecessary. Implementing Unpin for a type that you control does not grant 
you the ability to safely pin or unpin a !Unpin type; that still requires unsafety 
in the form of a call to Pin::new_unchecked or Pin::get_unchecked_mut. Second, 
there is already a safe way for you to unpin any type you control: the Drop trait! 
When you implement Drop for a type, you’re passed &mut self, even if your 
type was previously stored in a Pin and is !Unpin, all without any unsafety. That 
potential for unsafety is covered by the invariants of Pin::new_unchecked, which 
must be upheld to create a Pin of such an !Unpin type in the first place.

When to Make a Trait Unsafe

Few traits in the wild are unsafe, but those that are all follow the same pat-
tern. A trait should be unsafe if safe code that assumes that trait is imple-
mented correctly can exhibit memory unsafety if the trait is not implemented 
correctly.

The Send trait is a good example to keep in mind here—safe code can 
easily spawn a thread and pass a value to that spawned thread, but if Rc were 
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Send, that sequence of operations could trivially lead to memory unsafety. 
Consider what would happen if you cloned an Rc<Box> and sent it to another 
thread: the two threads could easily both try to deallocate the Box since they 
do not correctly synchronize access to the Rc’s reference count.

The Unpin trait is a good counterexample. While it is possible to write 
unsafe code that triggers memory unsafety if Unpin is implemented incor-
rectly, no entirely safe code can trigger memory unsafety due to an imple-
mentation of Unpin. It’s not always easy to determine that a trait can be safe 
(indeed, the Unpin trait was unsafe throughout most of the RFC process), 
but you can always err on the side of making the trait unsafe, and then 
make it safe later on if you realize that is the case! Just keep in mind that 
that is a backward incompatible change.

Also keep in mind that just because it feels like an incorrect (or even 
malicious) implementation of a trait would cause a lot of havoc, that’s not 
necessarily a good reason to make it unsafe. The unsafe marker should first 
and foremost be used to highlight cases of memory unsafety, not just some-
thing that can trigger errors in business logic. For example, the Eq, Ord, 
Deref, and Hash traits are all safe, even though there is likely much code out 
in the world that would go haywire if faced with a malicious implementa-
tion of, say, Hash that returned a different random hash each time it was 
called. This extends to unsafe code too—there is almost certainly unsafe 
code out there that would be memory-unsafe in the presence of such an 
implementation of Hash—but that does not mean Hash should be unsafe. 
The same is true for an implementation of Deref that dereferenced to a dif-
ferent (but valid) target each time. Such unsafe code would be relying on a 
contract of Hash or Deref that does not actually hold; Hash never claimed that 
it was deterministic, and neither did Deref. Or rather, the authors of those 
implementations never used the unsafe keyword to make that claim!

N O T E  An important implication of traits like Eq, Hash, and Deref being safe is that unsafe 
code can rely only on the safety of safe code, not its correctness. This applies not only 
to traits, but to all unsafe/safe code interactions.

Great Responsibility
So far, we’ve looked mainly at the various things that you are allowed to do 
with unsafe code. But unsafe code is allowed to do those things only if it 
does so safely. Even though unsafe code can, say, dereference a raw pointer, 
it must do so only if it knows that pointer is valid as a reference to its poin-
tee at that moment in time, subject to all of Rust’s normal requirements of 
references. In other words, unsafe code is given access to tools that could be 
used to do unsafe things, but it must do only safe things using those tools.

That, then, raises the question of what safe even means in the first 
place. When is it safe to dereference a pointer? When is it safe to transmute 
between two different types? In this section, we’ll explore some of the key 
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invariants to keep in mind when wielding the power of unsafe, look at some 
common gotchas, and get familiar with some of the tools that help you 
write safer unsafe code.

The exact rules around what it means for Rust code to be safe are still 
being worked out. At the time of writing, the Unsafe Code Guidelines 
Working Group is hard at work nailing down all the dos and don’ts, but 
many questions remain unanswered. Most of the advice in this section is 
more or less settled, but I’ll make sure to call out any that isn’t. If anything, 
I’m hoping that this section will teach you to be careful about making 
assumptions when you write unsafe code, and prompt you to double-check 
the Rust reference before you declare your code production-ready.

What Can Go Wrong?
We can’t really get into the rules unsafe code must abide by without talk-
ing about what happens if you violate those rules. Let’s say you do mutably 
access a value from multiple threads concurrently, construct an unaligned 
reference, or dereference a dangling pointer—now what?

Unsafe code that is not ultimately safe is referred to as having undefined 
behavior. Undefined behavior generally manifests in one of three ways: not 
at all, through visible errors, or through invisible corruption. The first is the 
happy case—you wrote some code that is truly not safe, but the compiler 
generated sane code that the computer you’re running the code on exe-
cutes in a sane way. Unfortunately, the happiness here is very brittle. Should 
a new and slightly smarter version of the compiler come along, or some sur-
rounding code cause the compiler to apply another optimization, the code 
may no longer do something sane and tip over into one of the worse cases. 
Even if the same code is compiled by the same compiler, if it runs on a dif-
ferent platform or host, the program might act differently! This is why it is 
important to avoid undefined behavior even if everything currently seems 
to work fine. Not to do so is like playing a second round of Russian roulette 
just because you survived the first.

Visible errors are the easiest undefined behavior to catch. If you deref-
erence a null pointer, for example, your program will (in all likelihood) 
crash with an error, which you can then debug back to the root cause. That 
debugging may itself be difficult, but at least you have a notification that 
something is wrong. Visible errors can also manifest in less severe ways, 
such as deadlocks, garbled output, or panics that are printed but don’t trig-
ger a program exit, all of which tell you that there is a bug in your code that 
you have to go fix.

The worst manifestation of undefined behavior is when there is no 
immediate visible effect, but the program state is invisibly corrupted. 
Transaction amounts might be slightly off from what they should be, back-
ups might be silently corrupted, or random bits of internal memory could 
be exposed to external clients. The undefined behavior could cause ongo-
ing corruption, or extremely infrequent outages. Part of the challenge with 
undefined behavior is that, as the name implies, the behavior of the non-
safe unsafe code is not defined—the compiler might eliminate it entirely, 
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dramatically change the semantics of the code, or even miscompile sur-
rounding code. What that does to your program is entirely dependent on 
what the code in question does. The unpredictable impact of undefined 
behavior is the reason why all undefined behavior should be considered a 
serious bug, no matter how it currently manifests.

W H Y UNDEF INED BEH AV IOR?

An argument that often comes up in conversations about undefined behavior 
is that the compiler should emit an error if code exhibits undefined behavior 
instead of doing something weird and unpredictable . That way, it would be 
near-impossible to write bad unsafe code!

Unfortunately, that would be impossible because undefined behavior is 
rarely explicit or obvious . Instead, what usually happens is that the compiler 
simply applies optimizations under the assumption that the code follows the 
specification . Should that turn out to not be the case—which is rarely clear until 
runtime—it’s difficult to predict what the effect might be . Maybe the optimiza-
tion is still valid, and nothing bad happens; but maybe it’s not, and the seman-
tics of the code end up slightly different from that of the unoptimized version .

If we were to tell compiler developers that they aren’t allowed to assume 
anything about the underlying code, what we’d really be telling them is that 
they cannot perform a wide range of the optimizations that they implement with 
great success today . Nearly all sophisticated optimizations make assumptions 
about what the code in question can and cannot do according to the language 
specification .

If you want a good illustration of how specifications and compiler optimi-
zations interact in strange ways where it’s hard to assign blame, I recommend 
reading through Ralf Jung’s blog post “We Need Better Language Specs” 
(https://www.ralfj.de/blog/2020/12/14/provenance.html) .

Validity
Perhaps the most important concept to understand before writing unsafe 
code is validity, which dictates the rules for what values inhabit a given 
type—or, less formally, the rules for a type’s values. The concept is simpler 
than it sounds, so let’s dive into some concrete examples.

Reference Types

Rust is very strict about what values its reference types can hold. Specifically, 
references must never dangle, must always be aligned, and must always 
point to a valid value for their target type. In addition, a shared and an 
exclusive reference to a given memory location can never exist at the same 
time, and neither can multiple exclusive references to a location. These 

https://www.ralfj.de/blog/2020/12/14/provenance.html
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rules apply regardless of whether your code uses the references or not—you 
are not allowed to create a null reference even if you then immediately dis-
card it!

Shared references have the additional constraint that the pointee is 
not allowed to change during the reference’s lifetime. That is, any value 
the pointee contains must remain exactly the same over its lifetime. This 
applies transitively, so if you have an & to a type that contains a *mut T, you 
are not allowed to ever mutate the T through that *mut even though you 
could write code to do so using unsafe. The only exception to this rule is a 
value wrapped by the UnsafeCell type. All other types that provide interior 
mutability, like Cell, RefCell, and Mutex, internally use an UnsafeCell.

An interesting result of Rust’s strict rules for references is that for many 
years, it was impossible to safely take a reference to a field of a packed or 
partially uninitialized struct that used repr(Rust). Since repr(Rust) leaves 
a type’s layout undefined, the only way to get the address of a field was by 
writing &some_struct.field as *const _. However, if some_struct is packed, 
then some_struct.field may not be aligned, and thus creating an & to it is 
illegal! Further, if some_struct isn’t fully initialized, then the some_struct ref-
erence itself cannot exist! In Rust 1.51.0, the ptr::addr_of! macro was stabi-
lized, which added a mechanism for directly obtaining a reference to a field 
without first creating a reference, fixing this particular problem. Internally, 
it is implemented using something called raw references (not to be confused 
with raw pointers), which directly create pointers to their operands rather 
than going via a reference. Raw references were introduced in RFC 2582 
but haven’t been stabilized themselves yet at the time of writing.

Primitive Types

Some of Rust’s primitive types have restrictions on what values they can 
hold. For example, a bool is defined as being 1 byte large but is only allowed 
to hold the value 0x00 or the value 0x01, and a char is not allowed to hold 
a surrogate or a value above char::MAX. Most of Rust’s primitive types, and 
indeed most of Rust’s types overall, also cannot be constructed from unini-
tialized memory. These restrictions may seem arbitrary, but again often stem 
from the need to enable optimizations that wouldn’t be possible otherwise.

A good illustration of this is the niche optimization, which we discussed 
briefly when talking about pointer types earlier in this chapter. To recap, 
the niche optimization tucks away the enum discriminant value in the 
wrapped type in certain cases. For example, since a reference cannot ever 
be all zeros, an Option<&T> can use all zeros to represent None, and thus avoid 
spending an extra byte (plus padding) to store the discriminator byte. The 
compiler can optimize Booleans in the same way and potentially take it 
even further. Consider the type Option<Option<bool>>>. Since the compiler 
knows that the bool is either 0x00 or 0x01, it’s free to use 0x02 to represent 
Some(None) and 0x03 to represent None. Very nice and tidy! But if someone 
were to come along and treat the byte 0x03 as a bool, and then place that 
value in an Option<Option<bool>> optimized in this way, bad things would 
happen.
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It bears repeating that it’s not important whether the Rust compiler cur-
rently implements this optimization or not. The point is that it is allowed to, 
and therefore any unsafe code you write must conform to that contract or 
risk hitting a bug later on should the behavior change.

Owned Pointer Types

Types that point to memory they own, like Box and Vec, are generally sub-
ject to the same optimizations as if they held an exclusive reference to the 
pointed-to memory unless they’re explicitly accessed through a shared 
reference. Specifically, the compiler assumes that the pointed-to memory 
is not shared or aliased elsewhere, and makes optimizations based on 
that assumption. For example, if you extracted the pointer from a Box and 
then constructed two Boxes from that same pointer and wrapped them in 
ManuallyDrop to prevent a double-free, you’d likely be entering undefined 
behavior territory. That’s the case even if you only ever access the inner 
type through shared references. (I say “likely” because this isn’t fully set-
tled in the language reference yet, but a rough consensus has arisen.)

Storing Invalid Values

Sometimes you need to store a value that isn’t currently valid for its type. 
The most common example of this is if you want to allocate a chunk of 
memory for some type T and then read in the bytes from, say, the network. 
Until all the bytes have been read in, the memory isn’t going to be a valid T. 
Even if you just tried to read the bytes into a slice of u8, you would have to 
zero those u8s first, because constructing a u8 from uninitialized memory is 
also undefined behavior.

The MaybeUninit<T> type is Rust’s mechanism for working with values 
that aren’t valid. A MaybeUninit<T> stores exactly a T (it is #[repr(transparent)]), 
but the compiler knows to make no assumptions about the validity of that T. 
It won’t assume that references are non-null, that a Box<T> isn’t dangling, or 
that a bool is either 0 or 1. This means it’s safe to hold a T backed by unini-
tialized memory inside a MaybeUninit (as the name implies). MaybeUninit is 
also a very useful tool in other unsafe code where you have to temporarily 
store a value that may be invalid. Maybe you have to store an aliased Box<T> 
or stash a char surrogate for a second—MaybeUninit is your friend.

You will generally do only three things with a MaybeUninit: create it using 
the MaybeUninit::uninit method, write to its contents using MaybeUninit::as 
_mut_ptr, or take the inner T once it is valid again with MaybeUninit::assume_init. 
As its name implies, uninit creates a new MaybeUninit<T> of the same size as 
a T that initially holds uninitialized memory. The as_mut_ptr method gives 
you a raw pointer to the inner T that you can then write to; nothing stops 
you from reading from it, but reading from any of the uninitialized bits is 
undefined behavior. And finally, the unsafe assume_init method consumes 
the MaybeUninit<T> and returns its contents as a T following the assertion that 
the backing memory now makes up a valid T.

Listing 9-5 shows an example of how we might use MaybeUninit to safely 
initialize a byte array without explicitly zeroing it.
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fn fill(gen: impl FnMut() -> Option<u8>) {
    let mut buf = [MaybeUninit::<u8>::uninit(); 4096];
    let mut last = 0;
    for (i, g) in std::iter::from_fn(gen).take(4096).enumerate() {
        buf[i] = MaybeUninit::new(g);
        last = i + 1;
    }
    // Safety: all the u8s up to last are initialized.
let init: &[u8] = unsafe {
  MaybeUninit::slice_assume_init_ref(&buf[..last])
};
    // ... do something with init ...
}

Listing 9-5: Using MaybeUninit to safely initialize an array

While we could have declared buf as [0; 4096] instead, that would 
require the function to first write out all those zeros to the stack before 
executing, even if it’s going to overwrite them all again shortly thereafter. 
Normally that wouldn’t have a noticeable impact on performance, but if 
this was in a sufficiently hot loop, it might! Here, we instead allow the array 
to keep whatever values happened to be on the stack when the function was 
called, and then overwrite only what we end up needing.

N O T E  Be careful with dropping partially initialized memory. If a panic causes an unex-
pected early drop before the MaybeUninit<T> has been fully initialized, you’ll have to 
take care to drop only the parts of T that are now valid, if any. You can just drop the 
MaybeUninit and have the backing memory forgotten, but if it holds, say, a Box, you 
might end up with a memory leak!

Panics
An important and often overlooked aspect of ensuring that code using 
unsafe operations is safe is that the code must also be prepared to handle 
panics. In particular, as we discussed briefly in Chapter 5, Rust’s default 
panic handler on most platforms will not crash your program on a panic 
but will instead unwind the current thread. An unwinding panic effec-
tively drops everything in the current scope, returns from the current func-
tion, drops everything in the scope that enclosed the function, and so on, 
all the way down the stack until it hits the first stack frame for the current 
thread. If you don’t take unwinding into account in your unsafe code, you 
may be in for trouble. For example, consider the code in Listing 9-6, which 
tries to efficiently push many values into a Vec at once.

impl<T: Default> Vec<T> {
    pub fn fill_default(&mut self) {
        let fill = self.capacity() - self.len();
        if fill == 0 { return; }
        let start = self.len();
        unsafe {
            self.set_len(start + n);
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            for i in 0..fill {
                *self.get_unchecked_mut(start + i) = T::default();
            }
        }
    }
}

Listing 9-6: A seemingly safe method for filling a vector with Default values

Consider what happens to this code if a call to T::default panics. First, 
fill_default will drop all its local values (which are just integers) and then 
return. The caller will then do the same. At some point up the stack, we 
get to the owner of the Vec. When the owner drops the vector, we have a 
problem: the length of the vector now indicates that we own more Ts than 
we actually produced due to the call to set_len. For example, if the very 
first call to T::default panicked when we aimed to fill eight elements, that 
means Vec::drop will call drop on eight Ts that actually contain uninitialized 
memory!

The fix in this case is simple: the code must update the length after writ-
ing all the elements. We wouldn’t have realized there was a problem if we 
didn’t carefully consider the effect of unwinding panics on the correctness 
of our unsafe code.

When you’re combing through your code for these kinds of problems, 
you’ll want to look out for any statements that may panic, and consider 
whether your code is safe if they do. Alternatively, check whether you can 
convince yourself that the code in question will never panic. Pay particular 
attention to anything that calls user-provided code—in those cases, you have 
no control over the panics and should assume that the user code will panic.

A similar situation arises when you use the ? operator to return early 
from a function. If you do this, make sure that your code is still safe if it 
does not execute the remainder of the code in the function. It’s rarer for ? 
to catch you off guard since you opted into it explicitly, but it’s worth keep-
ing an eye out for.

Casting
As we discussed in Chapter 2, two different types that are both #[repr(Rust)] 
may be represented differently in memory even if they have fields of the 
same type and in the same order. This in turn means that it’s not always 
obvious whether it is safe to cast between two different types. In fact, Rust 
doesn’t even guarantee that two instances of a single type with generic 
arguments that are themselves laid out the same way are represented the 
same way. For example, in Listing 9-7, A and B are not guaranteed to have 
the same in-memory representation.

struct Foo<T> {
    one: bool,
    two: PhantomData<T>,
}
struct Bar;
struct Baz;
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type A = Foo<Bar>;
type B = Foo<Baz>;

Listing 9-7: Type layout is not predictable.

The lack of guarantees for repr(Rust) is important to keep in mind 
when you do type casting in unsafe code—just because two types feel like 
they should be interchangeable, that is not necessarily the case. Casting 
between two types that have different representations is a quick path to 
undefined behavior. At the time of writing, the Rust community is actively 
working out the exact rules for how types are represented, but for now, very 
few guarantees are given, so that’s what we have to work with.

Even if identical types were guaranteed to have the same in-memory 
representation, you’d still run into the same problem when types are 
nested. For example, while UnsafeCell<T>, MaybeUninit<T>, and T all really 
just hold a T, and you can cast between them to your heart’s delight, that 
goes out the window once you have, for example, an Option<MaybeUninit<T>>. 
Though Option<T> may be able to take advantage of the niche optimization 
(using some invalid value of T to represent None for the Option), MaybeUninit<T> 
can hold any bit pattern, so that optimization does not apply, and an extra 
byte must be kept for the Option discriminator.

It’s not just optimizations that can cause layouts to diverge once wrap-
per types come into play. As an example, take the code in Listing 9-8; here, 
the layout of Wrapper<PhantomData<u8>> and Wrapper<PhantomData<i8>> is com-
pletely different even though the provided types are both empty!

struct Wrapper<T: SneakyTrait> {
    item: T::Sneaky,
    iter: PhantomData<T>,
}
trait SneakyTrait {
    type Sneaky;
}
impl SneakyTrait for PhantomData<u8> {
    type Sneaky = ();
}
impl SneakyTrait for PhantomData<i8> {
    type Sneaky = [u8; 1024];
}

Listing 9-8: Wrapper types make casting hard to get right.

All of this isn’t to say that you can never cast types in Rust. Things get a 
lot easier, for example, when you control all of the types involved and their 
trait implementations, or if types are #[repr(C)]. You just need to be aware 
that Rust gives very few guarantees about in-memory representations, and 
write your code accordingly!

The Drop Check
The Rust borrow checker is, in essence, a sophisticated tool for ensuring 
the soundness of code at compile time, which is in turn what gives Rust a 
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way to express code being “safe.” How exactly the borrow checker does its 
job is beyond the scope of this book, but one check, the drop check, is worth 
going through in some detail since it has some direct implications for 
unsafe code. To understand drop checking, let’s put ourselves in the Rust 
compiler’s shoes for a second and look at two code snippets. First, take a 
look at the little three-liner in Listing 9-9 that takes a mutable reference to 
a variable and then mutates that same variable right after.

let mut x = true;
let foo = Foo(&mut x);
x = false;

Listing 9-9: The implementation of Foo dictates whether this code should compile

Without knowing the definition of Foo, can you say whether this code 
should compile or not? When we set x = false, there is still a foo hanging 
around that will be dropped at the end of the scope. We know that foo con-
tains a mutable borrow of x, which would indicate that the mutable borrow 
that’s necessary to modify x is illegal. But what’s the harm in allowing it? It 
turns out that allowing the mutation of x is problematic only if Foo imple-
ments Drop—if Foo doesn’t implement Drop, then we know that Foo won’t 
touch the reference to x after its last use. Since that last use is before we 
need the exclusive reference for the assignment, we can allow the code! On 
the other hand, if Foo does implement Drop, we can’t allow this code, since 
the Drop implementation may use the reference to x.

Now that you’re warmed up, take a look at Listing 9-10. In this not-so-
straightforward code snippet, the mutable reference is buried even deeper.

fn barify<’a>(_: &’a mut i32) -> Bar<Foo<’a>> { .. }
let mut x = true;
let foo = barify(&mut x);
x = false;

Listing 9-10: The implementations of both Foo and Bar dictate whether this code should 
compile

Again, without knowing the definitions of Foo and Bar, can you say 
whether this code should compile or not? Let’s consider what happens if 
Foo implements Drop but Bar does not, since that’s the most interesting case. 
Usually, when a Bar goes out of scope, or otherwise gets dropped, it’ll still 
have to drop Foo, which in turn means that the code should be rejected for 
the same reason as before: Foo::drop might access the reference to x. However, 
Bar may not contain a Foo directly at all, but instead just a PhantomData<Foo<'a>> 
or a &'static Foo<'a>, in which case the code is actually okay—even though 
the Bar is dropped, Foo::drop is never invoked, and the reference to x is never 
accessed. This is the kind of code we want the compiler to accept because a 
human will be able to identify that it’s okay, even if the compiler finds it dif-
ficult to detect that this is the case.

The logic we’ve just walked through is the drop check. Normally it 
doesn’t affect unsafe code too much as its default behavior matches user 
expectations, with one major exception: dangling generic parameters. 
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Imagine that you’re implementing your own Box<T> type, and someone 
places a &mut x into it as we did in Listing 9-9. Your Box type needs to imple-
ment Drop to free memory, but it doesn’t access T beyond dropping it. Since 
dropping a &mut does nothing, it should be entirely fine for code to access 
&mut x again after the last time the Box is accessed but before it’s dropped! 
To support types like this, Rust has an unstable feature called dropck_eye-
patch (because it makes the drop check partially blind). The feature is likely 
to remain unstable forever and is intended to serve only as a temporary 
escape hatch until a proper mechanism is devised. The dropck_eyepatch fea-
ture adds a #[may_dangle] attribute, which you can add as a prefix for generic 
lifetimes and types in a type’s Drop implementation to tell the drop check 
machinery that you won’t use the annotated lifetime or type beyond drop-
ping it. You use it by writing:

unsafe impl<#[may_dangle] T> Drop for ..

This escape hatch allows a type to declare that a given generic param-
eter isn’t used in Drop, which enables use cases like Box<&mut T>. However, 
it also introduces a new problem if your Box<T> holds a raw heap pointer, 
*mut T, and allows T to dangle using #[may_dangle]. Specifically, the *mut T 
makes Rust’s drop check think that your Box<T> doesn’t own a T, and thus 
that it doesn’t call T::drop either. Combined with the may_dangle assertion 
that we don’t access T when the Box<T> is dropped, the drop check now con-
cludes that it’s fine to have a Box<T> where the T doesn’t live until the Box 
is dropped (like our shortened &mut x in Listing 9-10). But that’s not true, 
since we do call T::drop, which may itself access, say, a reference to said x.

Luckily, the fix is simple: we add a PhantomData<T> to tell the drop check 
that even though the Box<T> doesn’t hold any T, and won’t access T on drop, 
it does still own a T and will drop one when the Box is dropped. Listing 9-11 
shows what our hypothetical Box type would look like.

struct Box<T> {
  t: NonNull<T>, // NonNull not *mut for covariance (Chapter 1)
  _owned: PhantomData<T>, // For drop check to realize we drop a T
}
unsafe impl<#[may_dangle] T> for Box<T> { /* ... */ }

Listing 9-11: A definition for Box that is maximally flexible in terms of the drop check

This interaction is subtle and easy to miss, but it arises only when you 
use the unstable #[may_dangle] attribute. Hopefully this subsection will serve 
as a warning so that when you see unsafe impl Drop in the wild in the future, 
you’ll know to look for a PhantomData<T> as well!

N O T E  Another consideration for unsafe code concerning Drop is to make sure that you have 
a Type<T> that lets T continue to live after self is dropped. For example, if you’re 
implementing delayed garbage collection, you need to also add T: 'static. Otherwise, 
if T = WriteOnDrop<&mut U>, the later access or drop of T could trigger undefined 
behavior!
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Coping with Fear
With this chapter mostly behind you, you may now be more afraid of unsafe 
code than you were before you started. While that is understandable, it’s 
important to stress that it’s not only possible to write safe unsafe code, but 
most of the time it’s not even that difficult. The key is to make sure that you 
handle unsafe code with care; that’s half the struggle. And be really sure 
that there isn’t a safe implementation you can use instead before resorting 
to unsafe.

In the remainder of this chapter, we’ll look at some techniques and 
tools that can help you be more confident in the correctness of your unsafe 
code when there’s no way around it.

Manage Unsafe Boundaries
It’s tempting to reason about unsafety locally; that is, to consider whether 
the code in the unsafe block you just wrote is safe without thinking too 
much about its interaction with the rest of the codebase. Unfortunately, 
that kind of local reasoning often comes back to bite you. A good example 
of this is the Unpin trait—you may write some code for your type that uses 
Pin::new_unchecked to produce a pinned reference to a field of the type, and 
that code may be entirely safe when you write it. But then at some later 
point in time, you (or someone else) might add a safe implementation of 
Unpin for said type, and suddenly the unsafe code is no longer safe, even 
though it’s nowhere near the new impl!

Safety is a property that can be checked only at the privacy boundary of 
all code that relates to the unsafe block. Privacy boundary here isn’t so much 
a formal term as an attempt at describing “any part of your code that can 
fiddle with the unsafe bits.” For example, if you declare a public type Foo in 
a module bar that is marked pub or pub(crate), then any other code in the 
same crate can implement methods on and traits for Foo. So, if the safety 
of your unsafe code depends on Foo not implementing particular traits or 
methods with particular signatures, you need to remember to recheck the 
safety of that unsafe block any time you add an impl for Foo. If, on the other 
hand, Foo is not visible to the entire crate, then a much smaller set of scopes 
is able to add problematic implementations, and thus, the risk of acciden-
tally adding an implementation that breaks the safety invariants goes down 
accordingly. If Foo is private, then only the current module and any submod-
ules can add such implementations.

The same rule applies to access to fields: if the safety of an unsafe block 
depends on certain invariants over a type’s fields, then any code that can 
touch those fields (including safe code) falls within the privacy boundary 
of the unsafe block. Here, too, minimizing the privacy boundary is the 
best approach—code that cannot get to the fields cannot mess up your 
invariants!

Because unsafe code often requires this wide-reaching reasoning, 
it’s best practice to encapsulate the unsafety in your code as best you can. 
Provide the unsafety in the form of a single module, and strive to give that 
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module an interface that is entirely safe. That way you only need to audit the 
internals of that module for your invariants. Or better yet, stick the unsafe 
bits in their own crate so that you can’t leave any holes open by accident!

It’s not always possible to fully encapsulate complex unsafe interac-
tions to a single, safe interface, however. When that’s the case, try to narrow 
down the parts of the public interface that have to be unsafe so that you 
have only a very small number of them, give them names that clearly com-
municate that care is needed, and then document them rigorously.

It is sometimes tempting to remove the unsafe marker on internal APIs 
so that you don’t have to stick unsafe {} throughout your code. After all, 
inside your code you know never to invoke frobnify if you’ve previously 
called bazzify, right? Removing the unsafe annotation can lead to cleaner 
code but is usually a bad decision in the long run. A year from now, when 
your codebase has grown, you’ve paged out some of the safety invariants, 
and you “ just want to hack together this one feature real quick,” chances 
are that you’ll inadvertently violate one of those invariants. And since 
you don’t have to type unsafe, you won’t even think to check. Plus, even 
if you never make mistakes, what about other contributors to your code? 
Ultimately, cleaner code is not a good enough argument to remove the 
intentionally noisy unsafe marker.

Read and Write Documentation
It goes without saying that if you write an unsafe function, you must docu-
ment the conditions under which that function is safe to call. Here, both 
clarity and completeness are important. Don’t leave any invariants out, even 
if you’ve already written them somewhere else. If you have a type or module 
that requires certain global invariants—invariants that must always hold for 
all uses of the type—then remind the reader that they must also uphold the 
global invariants in every unsafe function’s documentation too. Developers 
often read documentation in an ad hoc, on-demand manner, so you can 
assume they have probably not read your carefully written module-level 
documentation and need to be given a nudge to do so.

What may be less obvious is that you should also document all unsafe 
implementations and blocks—think of this as providing proof that you 
do indeed uphold the contract the operation in question requires. For 
example, slice::get_unchecked requires that the provided index is within the 
bounds of the slice; when you call that method, put a comment just above 
it explaining how you know that the index is in fact guaranteed to be in 
bounds. In some cases, the invariants that the unsafe block requires are 
extensive, and your comments may get long. That’s a good thing. I have 
caught mistakes many times by trying to write the safety comment for an 
unsafe block and realizing halfway through that I actually don’t uphold 
a key invariant. You’ll also thank yourself a year down the road when you 
have to modify this code and ensure it’s still safe. And so will the contribu-
tor to your project who just stumbled across this unsafe call and wants to 
understand what’s going on.
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Before you get too deep into writing unsafe code, I also highly recom-
mend that you go read the Rustonomicon (https://doc.rust-lang.org/nomicon/) 
cover to cover. There are so many details that are easy to miss, and will 
come back to bite you if you’re not aware of them. We’ve covered many 
of them in this chapter, but it never hurts to be more aware. You should 
also make liberal use of the Rust reference whenever you’re in doubt. It’s 
added to regularly, and chances are that if you’re even slightly unsure about 
whether some assumption you have is right, the reference will call it out. If 
it doesn’t, consider opening an issue so that it’ll be added!

Check Your Work
Okay, so you’ve written some unsafe code, you’ve double- and triple-checked 
all the invariants, and you think it’s ready to go. Before you put it into pro-
duction, there are some automated tools that you should run your test suite 
through (you have a test suite, right?).

The first of these is Miri, the mid-level intermediate representation 
interpreter. Miri doesn’t compile your code into machine code but instead 
interprets the Rust code directly. This provides Miri with far more visibility 
into what your program is doing, which in turn allows it to check that your 
program doesn’t do anything obviously bad, like read from uninitialized 
memory. Miri can catch a lot of very subtle and Rust-specific bugs and is a 
lifesaver for anyone writing unsafe code.

Unfortunately, because Miri has to interpret the code to execute it, code 
run under Miri often runs orders of magnitude slower than its compiled 
counterpart. For that reason, Miri should really be used only to execute your 
test suite. It can also check only the code that actually runs, and thus won’t 
catch issues in code paths that your test suite doesn’t reach. You should think 
of Miri as an extension of your test suite, not a replacement for it.

There are also tools known as sanitizers, which instrument machine code 
to detect erroneous behavior at runtime. The overhead and fidelity of these 
tools vary greatly, but one widely loved tool is Google’s AddressSanitizer. 
It detects a large number of memory errors, such as use-after-free, buffer 
overflows, and memory leaks, all of which are common symptoms of incor-
rect unsafe code. Unlike Miri, these tools operate on machine code and thus 
tend to be fairly fast—usually within the same order of magnitude. But like 
Miri, they are constrained to analyzing the code that actually runs, so here 
too a solid test suite is vital.

The key to using these tools effectively is to automate them through 
your continuous integration pipeline so they’re run for every change, and 
to ensure that you add regression tests over time as you discover errors. 
The tools get better at catching problems as the quality of your test suite 
improves, so by incorporating new tests as you fix known bugs, you’re earn-
ing double points back, so to speak!

Finally, don’t forget to sprinkle assertions generously through unsafe 
code. A panic is always better than triggering undefined behavior! Check 
all of your assumptions with assertions if you can—even things like the size 

https://doc.rust-lang.org/nomicon/
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of a usize if you rely on that for safety. If you’re concerned about runtime 
cost, make use of the debug_assert* macros and the if cfg!(debug_assertions) 
|| cfg!(test) construct to execute them only in debug and test contexts.

A HOUSE OF CA R DS?

Unsafe code can violate all of Rust’s safety guarantees, and this is often touted 
as a reason why Rust’s whole safety argument is a charade . The concern is 
that it takes only one bit of incorrect unsafe code for the whole house to come 
crashing down and all safety to be lost . Proponents of this argument then 
sometimes argue that at the very least only unsafe code should be able to call 
unsafe code, so that the unsafety is visible all the way to the highest level of the 
application .

The argument is understandable—it is true that the safety of Rust code 
relies on the safety of all the transitive unsafe code it ends up invoking . And 
indeed, if some of that unsafe code is incorrect, it may have implications for 
the safety of the program overall . However, what this argument misses is that 
all successful safe languages provide a facility for language extensions that are 
not expressible in the (safe) surface language, usually in the form of code writ-
ten in C or assembly . Just as Rust relies on the correctness of its unsafe code, 
the safety of those languages relies on the correctness of those extensions .

Rust is different in that it doesn’t have a separate extension language, but 
instead allows extensions to be written in what amounts to a dialect of Rust 
(unsafe Rust) . This allows much closer integration between the safe and unsafe 
code, which in turn reduces the likelihood of errors due to impedance mis-
matches at the interface between the two, or due to developers being familiar 
with one but not the other . The closer integration also makes it easier to write 
tools that analyze the correctness of the unsafe code’s interaction with the safe 
code, as exemplified by tools like Miri . And since unsafe Rust continues to be 
subject to the borrow checker for any operation that isn’t explicitly unsafe, there 
remain many safety checks in place that aren’t present when developers must 
drop down to a language like C .

Summary
In this chapter, we’ve walked through the powers that come with the unsafe 
keyword and the responsibilities we accept by leveraging those powers. We 
also talked about the consequences of writing unsafe unsafe code, and how 
you really should be thinking about unsafe as a way to swear to the compiler 
that you’ve manually checked that the indicated code is still safe. In the 
next chapter, we’ll jump into concurrency in Rust and see how you can get 
all those cores on your shiny new computer to pull in the same direction!
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C O N C U R R E N C Y  ( A N D 

P A R A L L E L I S M )

With this chapter I hope to provide you 
with all the information and tools you’ll 

need to take effective advantage of concur-
rency in your Rust programs, to implement 

support for concurrent use in your libraries, and to 
use Rust’s concurrency primitives correctly. I won’t 
directly teach you how to implement a concurrent 
data structure or write a high-performance concur-
rent application. Instead, my goal is to give you suf-
ficient understanding of the underlying mechanisms 
that you’re equipped to wield them yourself for what-
ever you may need them for.

Concurrency comes in three flavors: single-thread concurrency (like 
with async/await, as we discussed in Chapter 8), single-core multithreaded 
concurrency, and multicore concurrency, which yields true parallelism. 
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Each flavor allows the execution of concurrent tasks in your program to be 
interleaved in different ways. There are even more subflavors if you take the 
details of operating system scheduling and preemption into account, but we 
won’t get too deep into that.

At the type level, Rust represents only one aspect of concurrency: multi-
threading. Either a type is safe for use by more than one thread, or it is not. 
Even if your program has multiple threads (and so is concurrent) but only 
one core (and so is not parallel), Rust must assume that if there are multiple 
threads, there may be parallelism. Most of the types and techniques we’ll be 
talking about apply equally whether two threads actually execute in parallel 
or not, so to keep the language simple, I’ll be using the word concurrency 
in the informal sense of “things running more or less at the same time” 
throughout this chapter. When the distinction is important, I’ll call that out.

What’s particularly neat about Rust’s approach to type-based safe 
 multi threading is that it is not a feature of the compiler, but rather a library 
feature that developers can extend to develop sophisticated concurrency 
contracts. Since thread safety is expressed in the type system through Send 
and Sync implementations and bounds, which propagate all the way out 
to application code, the thread safety of the entire program is checked 
through type checking alone.

The Rust Programming Language already covers most of the basics when it 
comes to concurrency, including the Send and Sync traits, Arc and Mutex, and 
channels. I therefore won’t reiterate much of that here, except where it’s 
worth repeating something specifically in the context of some other topic. 
Instead, we’ll look at what makes concurrency difficult and some common 
concurrency patterns intended to deal with those difficulties. We’ll also 
explore how concurrency and asynchrony interact (and how they don’t) 
before diving into how to use atomic operations to implement lower-level 
concurrent operations. Finally, I’ll close out the chapter with some advice 
for how to retain your sanity when working with concurrent code.

The Trouble with Concurrency
Before we dive into good patterns for concurrent programming and the 
details of Rust’s concurrency mechanisms, it’s worth taking some time to 
understand why concurrency is challenging in the first place. That is, why 
do we need special patterns and mechanisms for concurrent code?

Correctness
The primary difficulty in concurrency is coordinating access—in particular, 
write access—to a resource that is shared among multiple threads. If lots of 
threads want to share a resource solely for the purposes of reading it, then 
that’s usually easy: you stick it in an Arc or place it in something you can 
get a &'static to, and you’re all done. But once any thread wants to write, 
all sorts of problems arise, usually in the form of data races. Briefly, a data 
race occurs when one thread updates shared state while a second thread is 
also accessing that state, either to read it or to update it. Without additional 
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safeguards in place, the second thread may read partially overwritten state, 
clobber parts of what the first thread wrote, or fail to see the first thread’s 
write at all! In general, all data races are considered undefined behavior.

Data races are a part of a broader class of problems that primarily, 
though not exclusively, occur in a concurrent setting: race conditions. A race 
condition occurs whenever multiple outcomes are possible from a sequence 
of instructions, depending on the relative timing of other events in the 
system. These events can be threads executing a particular piece of code, 
a timer going off, a network packet coming in, or any other time-variable 
occurrence. Race conditions, unlike data races, are not inherently bad, 
and are not considered undefined behavior. However, they are a breed-
ing ground for bugs when particularly peculiar races occur, as you’ll see 
throughout this chapter.

Performance
Often, developers introduce concurrency into their programs in the 
hope of increasing performance. Or, to be more precise, they hope that 
concurrency will enable them to perform more operations per second in 
aggregate by taking advantage of more hardware resources. This can be 
done on a single core by having one thread run while another is waiting, 
or across multiple cores by having threads do work simultaneously, one on 
each core, that would otherwise happen serially on one core. Most devel-
opers are referring to the latter kind of performance gain when they talk 
about concurrency, which is often framed in terms of scalability. Scalability 
in this context means “the performance of this program scales with the 
number of cores,” implying that if you give your program more cores, its 
performance improves.

While achieving such a speedup is possible, it’s harder than it seems. 
The ultimate goal in scalability is linear scalability, where doubling the num-
ber of cores doubles the amount of work your program completes per unit 
of time. Linear scalability is also often called perfect scalability. However, in 
reality, few concurrent programs achieve such speedups. Sublinear scaling 
is more common, where the throughput increases nearly linearly as you go 
from one core to two, but adding more cores yields diminishing returns. 
Some programs even experience negative scaling, where giving the program 
access to more cores reduces throughput, usually because the many threads 
are all contending for some shared resource.

It might help to think of a group of people trying to pop all the bubbles 
on a piece of bubble wrap—adding more people helps initially, but at some 
point you get diminishing returns as the crowding makes any one person’s 
job harder. If the humans involved are particularly ineffective, your group 
may end up standing around discussing who should pop next and pop no 
bubbles at all! This kind of interference among tasks that are supposed to 
execute in parallel is called contention and is the archnemesis of scaling well. 
Contention can arise in a number of ways, but the primary offenders are 
mutual exclusion, shared resource exhaustion, and false sharing.
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Mutual Exclusion

When only a single concurrent task is allowed to execute a particular piece 
of code at any one time, we say that execution of that segment of code is 
mutually exclusive—if one thread executes it, no other thread can do so 
at the same time. The archetypal example of this is a mutual exclusion 
lock, or mutex, which explicitly enforces that only one thread gets to enter 
a particular critical section of your program code at any one time. Mutual 
exclusion can also happen implicitly, however. For example, if you spin up 
a thread to manage a shared resource and send jobs to it over an mpsc chan-
nel, that thread effectively implements mutual exclusion, since only one 
such job gets to execute at a time.

Mutual exclusion can also occur when invoking operating system or 
library calls that internally enforce single-threaded access to a critical sec-
tion. For example, for many years, the standard memory allocator required 
mutual exclusion for some allocations, which made memory allocation an 
operation that incurred significant contention in otherwise highly parallel 
programs. Similarly, many operating system operations that may seem like 
they should be independent, such as creating two files with different names 
in the same directory, may end up having to happen sequentially inside the 
kernel.

N O T E  Scalable concurrent allocations is the raison d’être for the jemalloc memory allocator!

Mutual exclusion is the most obvious barrier to parallel speedup since, 
by definition, it forces serial execution of some portion of your program. 
Even if you make the remainder of your program scale with the number of 
cores perfectly, the total speedup you can achieve is limited by the length of 
the mutually exclusive, serial section. Be mindful of your mutually exclusive 
sections, and seek to restrict them to only where strictly necessary.

N O T E  For the theoretically minded, the limits on the achievable speedup as a result of mutu-
ally exclusive sections of code can be computed using Amdahl’s law.

Shared Resource Exhaustion

Unfortunately, even if you achieve perfect concurrency within your tasks, 
the environment those tasks need to interact with may itself not be perfectly 
scalable. The kernel can handle only so many sends on a given TCP socket 
per second, the memory bus can do only so many reads at once, and your 
GPU has a limited capacity for concurrency. There’s no cure for this. The 
environment is usually where perfect scalability falls apart in practice, and 
fixes for such cases tend to require substantial re-engineering (or even new 
hardware!), so we won’t talk much more about this topic in this chapter. Just 
remember that scalability is rarely something you can “achieve,” and more 
something you just strive for.
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False Sharing

False sharing occurs when two operations that shouldn’t contend with one 
another contend anyway, preventing efficient simultaneous execution. This 
usually happens because the two operations happen to intersect on some 
shared resource even though they use unrelated parts of that resource.

The simplest example of this is lock oversharing, where a lock guards 
some composite state, and two operations that are otherwise independent 
both need to take the lock to update their particular parts of the state. 
This in turn means the operations must execute serially instead of in paral-
lel. In some cases it’s possible to split the single lock into two, one for each 
of the disjoint parts, which enables the operations to proceed in parallel. 
However, it’s not always straightforward to split a lock like this—the state 
may share a single lock because some third operation needs to lock over 
all the parts of the state. Usually you can still split the lock, but you have to 
be careful about the order in which different threads take the split locks to 
avoid deadlocks that can occur when two operations attempt to take them 
in different orders (look up the “dining philosophers problem,” if you’re 
curious). Alternatively, for some problems, you may be able to avoid the 
critical section entirely by using a lock-free version of the underlying algo-
rithm, though those are also tricky to get right. Ultimately, false sharing is a 
hard problem to solve, and there isn’t a single catchall solution—but identi-
fying the problem is a good start.

A more subtle example of false sharing occurs on the CPU level, as we 
discussed briefly in Chapter 2. The CPU internally operates on memory in 
terms of cache lines—longer sequences of consecutive bytes in memory—
rather than individual bytes, to amortize the cost of memory accesses. For 
example, on most Intel processors, the cache line size is 64 bytes. This 
means that every memory operation really ends up reading or writing some 
multiple of 64 bytes. The false sharing comes into play when two cores 
want to update the value of two different bytes that happen to fall on the 
same cache line; those updates must execute sequentially even though the 
updates are logically disjoint.

This might seem too low-level to matter, but in practice this kind of 
false sharing can decimate the parallel speedup of an application. Imagine 
that you allocate an array of integer values to indicate how many operations 
each thread has completed, but the integers all fall within the same cache 
line—now, all your otherwise parallel threads will contend on that one 
cache line for every operation they perform. If the operations are relatively 
quick, most of your execution time may end up being spent contending on 
those counters!

The trick to avoiding false cache line sharing is to pad your values so 
that they are the size of a cache line. That way, two adjacent values always 
fall on different cache lines. But of course, this also inflates the size of your 
data structures, so use this approach only when benchmarks indicate a 
problem.
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T HE COS T OF SCA L A BIL IT Y

A somewhat orthogonal aspect of concurrency that you should be mindful of is 
the cost of introducing concurrency in the first place . Compilers are really good 
at optimizing single-threaded code—they’ve been doing it for a long time, after 
all—and single-threaded code tends to get away with fewer expensive safe-
guards (like locks, channels, or atomic instructions) than concurrent code can . 
In aggregate, the various costs of concurrency can make a parallel program 
slower than its single-threaded counterpart, given any number of cores! This is 
why it’s important to measure both before and after you optimize and parallel-
ize: the results may surprise you .

If you’re curious about this topic, I highly recommend you read Frank 
McSherry’s 2015 paper “Scalability! But at what COST?” (https://www 
.frankmcsherry.org/assets/COST.pdf), which uncovers some particularly  
egregious examples of “costly scaling .”

Concurrency Models
Rust has three patterns for adding concurrency to your programs that 
you’ll come across fairly often: shared memory concurrency, worker pools, 
and actors. Going through every way you could add concurrency in detail 
would take a book of its own, so here I’ll focus on just these three patterns.

Shared Memory
Shared memory concurrency is, conceptually, very straightforward: the 
threads cooperate by operating on regions of memory shared between 
them. This might take the form of state guarded by a mutex or stored in 
a hash map with support for concurrent access from many threads. The 
many threads may be doing the same task on disjoint pieces of data, such 
as if many threads perform some function over disjoint subranges of a Vec, 
or they may be performing different tasks that require some shared state, 
such as in a database where one thread handles user queries to a table 
while another optimizes the data structures used to store that table in the 
background.

When you use shared memory concurrency, your choice of data struc-
tures is significant, especially if the threads involved need to cooperate 
very closely. A regular mutex might prevent scaling beyond a very small 
number of cores, a reader/writer lock might allow many more concurrent 
reads at the cost of slower writes, and a sharded reader/writer lock might 
allow perfectly scalable reads at the cost of making writes highly disruptive. 
Similarly, some concurrent hash maps aim for good all-round performance 
while others specifically target, say, concurrent reads where writes are rare. 
In general, in shared memory concurrency, you want to use data structures 

https://www.frankmcsherry.org/assets/COST.pdf
https://www.frankmcsherry.org/assets/COST.pdf
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that are specifically designed for something as close to your target use case 
as possible, so that you can take advantage of optimizations that trade off 
performance aspects your application does not care about for those it does.

Shared memory concurrency is a good fit for use cases where threads 
need to jointly update some shared state in a way that does not commute. 
That is, if one thread has to update the state s with some function f, and 
another has to update the state with some function g, and f(g(s)) != g(f(s)), 
then shared memory concurrency is likely necessary. If that is not the case, 
the other two patterns are likely better fits, as they tend to lead to simpler 
and more performant designs.

N O T E  Some problems have known algorithms that can provide concurrent shared memory 
operations without the use of locks. As the number of cores grows, these lock-free 
algorithms may scale better than lock-based algorithms, though they also often have 
slower per-core performance due to their complexity. As always with performance mat-
ters, benchmark first, then look for alternative solutions.

Worker Pools
In the worker pool model, many identical threads receive jobs from a 
shared job queue, which they then execute entirely independently. Web 
servers, for example, often have a worker pool handling incoming connec-
tions, and multithreaded runtimes for asynchronous code tend to use a 
worker pool to collectively execute all of an application’s futures (or, more 
accurately, its top-level tasks).

The lines between shared memory concurrency and worker pools are 
often blurry, as worker pools tend to use shared memory concurrency to 
coordinate how they take jobs from the queue and how they return incom-
plete jobs back to the queue. For example, say you’re using the data paral-
lelism library rayon to perform some function over every element of a vector 
in parallel. Behind the scenes rayon spins up a worker pool, splits the vector 
into subranges, and then hands out subranges to the threads in the pool. 
When a thread in the pool finishes a range, rayon arranges for it to start 
working on the next unprocessed subrange. The vector is shared among all 
the worker threads, and the threads coordinate through a shared memory 
queue–like data structure that supports work stealing.

Work stealing is a key feature of most worker pools. The basic premise 
is that if one thread finishes its work early, and there’s no more unassigned 
work available, that thread can steal jobs that have already been assigned to 
a different worker thread but haven’t been started yet. Not all jobs take the 
same amount of time to complete, so even if every worker is given the same 
number of jobs, some workers may end up finishing their jobs more quickly 
than others. Rather than sit around and wait for the threads that drew 
longer-running jobs to complete, those threads that finish early should help 
the stragglers so the overall operation is completed sooner.

It’s quite a task to implement a data structure that supports this kind 
of work stealing without incurring significant overhead from threads con-
stantly trying to steal work from one another, but this feature is vital to a 



174   Chapter 10

high-performance worker pool. If you find yourself in need of a worker 
pool, your best bet is usually to use one that has already seen a lot of work 
go into it, or at least reuse data structures from an existing one, rather than 
to write one yourself from scratch.

Worker pools are a good fit when the work that each thread performs is 
the same, but the data it performs it on varies. In a rayon parallel map opera-
tion, every thread performs the same map computation; they just perform 
it on different subsets of the underlying data. In a multithreaded asynchro-
nous runtime, each thread simply calls Future::poll; they just call it on dif-
ferent futures. If you start having to distinguish between the threads in your 
thread pool, a different design is probably more appropriate.

CONNEC T ION POOL S

A connection pool is a shared memory construct that keeps a set of established 
connections and hands them out to threads that need a connection . It’s a com-
mon design pattern in libraries that manage connections to external services . 
If a thread needs a connection but one isn’t available, either a new connection 
is established or the thread is forced to block . When a thread is done with a 
connection, it returns that connection to the pool, and thus makes it available to 
other threads that may be waiting .

Usually, the hardest task for a connection pool is managing connection 
life cycles . A connection can be returned to the pool in whatever state it was 
put in by the last thread that used it . The connection pool therefore has to make 
sure any state associated with the connection, whether on the client or on the 
server, has been reset so that when the connection is subsequently used by 
another thread, that thread can act as though it was given a fresh, dedicated 
connection .

Actors
The actor concurrency model is, in many ways, the opposite of the worker 
pool model. Whereas the worker pool has many identical threads that 
share a job queue, the actor model has many separate job queues, one 
for each job “topic.” Each job queue feeds into a particular actor, which 
handles all jobs that pertain to a subset of the application’s state. That state 
might be a database connection, a file, a metrics collection data structure, 
or any other structure that you can imagine many threads may need to be 
able to access. Whatever it is, a single actor owns that state, and if some 
task wants to interact with that state, it needs to send a message to the 
owning actor summarizing the operation it wishes to perform. When the 
owning actor receives that message, it performs the indicated action and 
responds to the inquiring task with the result of the operation, if relevant. 



Concurrency (and Parallelism)   175

Since the actor has exclusive access to its inner resource, no locks or other 
synchronization mechanisms are required beyond what’s needed for the 
messaging.

A key point in the actor pattern is that actors all talk to one another. 
If, say, an actor that is responsible for logging needs to write to a file and a 
database table, it might send off messages to the actors responsible for each 
of those, asking them to perform the respective actions, and then proceed 
to the next log event. In this way, the actor model more closely resembles a 
web than spokes on a wheel—a user request to a web server might start as a 
single request to the actor responsible for that connection but might transi-
tively spawn tens, hundreds, or even thousands of messages to actors deeper 
in the system before the user’s request is satisfied.

Nothing in the actor model requires that each actor is its own thread. To 
the contrary, most actor systems suggest that there should be a large number 
of actors, and so each actor should map to a task rather than a thread. After 
all, actors require exclusive access to their wrapped resources only when 
they execute, and do not care whether they are on a thread of their own 
or not. In fact, very frequently, the actor model is used in conjunction with 
the worker pool model—for example, an application that uses the multi-
threaded asynchronous runtime Tokio can spawn an asynchronous task for 
each actor, and Tokio will then make the execution of each actor a job in its 
worker pool. Thus, the execution of a given actor may move from thread to 
thread in the worker pool as the actor yields and resumes, but every time the 
actor executes it maintains exclusive access to its wrapped resource.

The actor concurrency model is well suited for when you have many 
resources that can operate relatively independently, and where there is 
little or no opportunity for concurrency within each resource. For example, 
an operating system might have an actor responsible for each hardware 
device, and a web server might have an actor for each backend database 
connection. The actor model does not work so well if you need only a few 
actors, if work is skewed significantly among the actors, or if some actors 
grow large—in all of those cases, your application may end up being bottle-
necked on the execution speed of a single actor in the system. And since 
actors each expect to have exclusive access to their little slice of the world, 
you can’t easily parallelize the execution of that one bottleneck actor.

Asynchrony and Parallelism
As we discussed in Chapter 8, asynchrony in Rust enables concurrency 
without parallelism—we can use constructs like selects and joins to have 
a single thread poll multiple futures and continue when one, some, or all 
of them complete. Because there is no parallelism involved, concurrency 
with futures does not fundamentally require those futures to be Send. Even 
spawning a future to run as an additional top-level task does not fundamen-
tally require Send, since a single executor thread can manage the polling of 
many futures at once.
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However, in most cases, applications want both concurrency and parallel-
ism. For example, if a web application constructs a future for each incoming 
connection and so has many active connections at once, it probably wants the 
asynchronous executor to be able to take advantage of more than one core 
on the host computer. That won’t happen naturally: your code has to explic-
itly tell the executor which futures can run in parallel and which cannot.

In particular, two pieces of information must be given to the executor 
to let it know that it can spread the work in the futures across a worker pool 
of threads. The first is that the futures in question are Send—if they aren’t, 
the executor is not allowed to send the futures to other threads for process-
ing, and no parallelism is possible; only the thread that constructed such 
futures can poll them.

The second piece of information is how to split the futures into tasks 
that can operate independently. This ties back to the discussion of tasks ver-
sus futures from Chapter 8: if one giant Future contains a number of Future 
instances that themselves correspond to tasks that can run in parallel, the 
executor must still call poll on the top-level Future, and it must do so from 
a single thread, since poll requires &mut self. Thus, to achieve parallelism 
with futures, you have to explicitly spawn the futures you want to be able to 
run in parallel. Also, because of the first requirement, the executor func-
tion you use to do so will require that the passed-in Future is Send.

A S Y NCHRONOUS S Y NCHRONIZ AT ION PR IMIT I V ES

Most of the synchronization primitives that exist for blocking code (think 
std::sync) also have asynchronous counterparts . There are asynchronous vari-
ants of channels, mutexes, reader/writer locks, barriers, and all sorts of other 
similar constructs . We need these because, as discussed in Chapter 8, blocking 
inside a future will hold up other work the executor may need to do, and so is 
inadvisable .

However, the asynchronous versions of these primitives are often slower 
than their synchronous counterparts because of the additional machinery 
needed to perform the necessary wake-ups . For that reason, you may want to 
use synchronous synchronization primitives even in asynchronous contexts when-
ever the use does not risk blocking the executor . For example, while it’s generally 
true that acquiring a Mutex might block for a long time, that might not be true for 
a particular Mutex that, perhaps, is acquired only rarely, and only ever for short 
periods of time . In that case, blocking for the short time until the Mutex becomes 
available again might not actually cause any problems . You will want to make 
sure that you never yield or perform other long-running operations while holding 
the MutexGuard, but barring that you shouldn’t run into problems .

As always with such optimizations, though, make sure you measure first, 
and choose only the synchronous primitive if it nets you significant performance 
improvements . If it does not, the additional footguns introduced by using a syn-
chronous primitive in an asynchronous context are probably not worth it .
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Lower-Level Concurrency
The standard library provides the std::sync::atomic module, which pro-
vides access to the underlying CPU primitives, higher-level constructs like 
channels and mutexes are built with. These primitives come in the form 
of atomic types with names starting with Atomic—AtomicUsize, AtomicI32, 
AtomicBool, AtomicPtr, and so on—the Ordering type, and two functions 
called fence and compiler_fence. We’ll look at each of these over the next few 
sections.

These types are the blocks used to build any code that has to communi-
cate between threads. Mutexes, channels, barriers, concurrent hash tables, 
lock-free stacks, and all other synchronization constructs ultimately rely on 
these few primitives to do their jobs. They also come in handy on their own 
for lightweight cooperation between threads where heavyweight synchroni-
zation like a mutex is excessive—for example, to increment a shared coun-
ter or set a shared Boolean to true.

The atomic types are special in that they have defined semantics for 
what happens when multiple threads try to access them concurrently. These 
types all support (mostly) the same API: load, store, fetch_*, and compare_
exchange. In the rest of this section, we’ll look at what those do, how to use 
them correctly, and what they’re useful for. But first, we have to talk about 
low-level memory operations and memory ordering.

Memory Operations
Informally, we often refer to accessing variables as “reading from” or “writ-
ing to” memory. In reality, a lot of machinery between code uses a variable 
and the actual CPU instructions that access your memory hardware. It’s 
important to understand that machinery, at least at a high level, in order to 
understand how concurrent memory accesses behave.

The compiler decides what instructions to emit when your program 
reads the value of a variable or assigns a new value to it. It is permitted to 
perform all sorts of transformations and optimizations on your code and 
may end up reordering your program statements, eliminating operations 
it deems redundant, or using CPU registers rather than actual memory to 
store intermediate computations. The compiler is subject to a number of 
restrictions on these transformations, but ultimately only a subset of your 
variable accesses actually end up as memory access instructions.

At the CPU level, memory instructions come in two main shapes: loads 
and stores. A load pulls bytes from a location in memory into a CPU regis-
ter, and a store stores bytes from a CPU register into a location in memory. 
Loads and stores operate on small chunks of memory at a time: usually 
8 bytes or less on modern CPUs. If a variable access spans more bytes than 
can be accessed with a single load or store, the compiler automatically turns 
it into multiple load or store instructions, as appropriate. The CPU also has 
some leeway in how it executes a program’s instructions to make better use 
of the hardware and improve program performance. For example, modern 
CPUs often execute instructions in parallel, or even out of order, when they 
don’t have dependencies on each other. There are also several layers of caches 
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between each CPU and your computer’s DRAM, which means that a load 
of a given memory location may not necessarily see the latest store to that 
memory location, going by wall-clock time.

In most code, the compiler and CPU are permitted to transform the 
code only in ways that don’t affect the semantics of the resulting program, 
so these transformations are invisible to the programmer. However, in the 
context of parallel execution, these transformations can have a significant 
impact on application behavior. Therefore, CPUs typically provide multiple 
different variations of the load and store instructions, each with different 
guarantees about how the CPU may reorder them and how they may be 
interleaved with parallel operations on other CPUs. Similarly, compilers (or 
rather, the language the compiler compiles) provide different annotations 
you can use to force particular execution constraints for some subset of 
their memory accesses. In Rust, those annotations come in the form of the 
atomic types and their methods, which we’ll spend the rest of this section 
picking apart.

Atomic Types
Rust’s atomic types are so called because they can be accessed atomically—
that is, the value of an atomic-type variable is written all at once and will 
never be written using multiple stores, guaranteeing that a load of that vari-
able cannot observe that only some of the bytes composing the value have 
changed while others have not (yet). This is easiest understood by way of 
contrast with non-atomic types. For example, reassigning a new value to a 
tuple of type (i64, i64) typically requires two CPU store instructions, one 
for each 8-byte value. If one thread were to perform both of those stores, 
another thread could (if we ignore the borrow checker for a second) read 
the tuple’s value after the first store but before the second, and thus end up 
with an inconsistent view of the tuple’s value. It would end up reading the 
new value for the first element and the old value for the second element, a 
value that was never actually stored by any thread.

The CPU can atomically access values only of certain sizes, so there are 
only a few atomic types, all of which live in the atomic module. Each atomic 
type is of one of the sizes the CPU supports atomic access to, with multiple 
variations for things like whether the value is signed and to differentiate 
between an atomic usize and a pointer (which is of the same size as usize). 
Furthermore, the atomic types have explicit methods for loading and stor-
ing the values they hold, and a handful of more complex methods we’ll get 
back to later, so that the mapping between the code the programmer writes 
and the resulting CPU instructions is clearer. For example, AtomicI32::load 
performs a single load of a signed 32-bit value, and AtomicPtr::store per-
forms a single store of a pointer-sized (64 bits on a 64-bit platform) value.

Memory Ordering
Most of the methods on the atomic types take an argument of type Ordering, 
which dictates the memory ordering restrictions the atomic operation is 
subject to. Across different threads, loads and stores of an atomic value 
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may be sequenced by the compiler and CPU only in interleavings that are 
compatible with the requested memory ordering of each of the atomic 
operations on that atomic value. Over the next few sections, we’ll see some 
examples of why control over the ordering is important and necessary to get 
the expected semantics out of the compiler and CPU.

Memory ordering often comes across as counterintuitive, because we 
humans like to read programs from top to bottom and imagine that they 
execute line by line—but that’s not how the code actually executes when 
it hits the hardware. Memory accesses can be reordered, or even entirely 
elided, and writes on one thread may not immediately be visible to other 
threads, even if later writes in program order have already been observed.

Think of it like this: each memory location sees a sequence of modifica-
tions coming from different threads, and the sequences of modifications for 
different memory locations are independent. If two threads T1 and T2 both 
write to memory location M, then even if T1 executed first as measured by 
a user with a stopwatch, T2’s write to M may still appear to have happened 
first for M absent any other constraints between the two threads’ execution. 
Essentially, the computer does not take wall-clock time into account when it deter-
mines the value of a given memory location—all that matter are the execu-
tion constraints the programmer puts on what constitutes a valid execution. 
For example, if T1 writes to M and then spawns thread T2, which then 
writes to M, the computer must recognize T1’s write as having happened 
first because T2’s existence depends on T1.

If that’s hard to follow, don’t fret—memory ordering can be mind-
bending, and language specifications tend to use very precise but not very 
intuitive wording to describe it. We can construct a mental model that’s 
easier to grasp, if a little simplified, by instead focusing on the underlying 
hardware architecture. Very basically, your computer memory is structured 
as a treelike hierarchy of storage where the leaves are CPU registers and 
the roots are the storage on your physical memory chips, often called main 
memory. Between the two are several layers of caches, and different lay-
ers of the hierarchy can reside on different pieces of hardware. When a 
thread performs a store to a memory location, what really happens is that 
the CPU starts a write request for the value in a given CPU register that 
then has to make its way up the memory hierarchy toward main memory. 
When a thread performs a load, the request flows up the hierarchy until it 
hits a layer that has the value available, and returns from there. Herein lies 
the problem: writes aren’t visible everywhere until all caches of the written 
memory location have been updated, but other CPUs can execute instruc-
tions against the same memory location at the same time, and weirdness 
ensues. Memory ordering, then, is a way to request precise semantics for 
what happens when multiple CPUs access a particular memory location for 
a particular operation.

With this in mind, let’s take a look at the Ordering type, which is the 
primary mechanism by which we, as programmers, can dictate additional 
constraints on what concurrent executions are valid.

Ordering is defined as an enum with the variants shown in Listing 10-1.
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enum Ordering {
    Relaxed,
    Release,
    Acquire,
    AcqRel,
    SeqCst
}

Listing 10-1: The definition of Ordering

Each of these places different restrictions on the mapping from source 
code to execution semantics, and we’ll explore each one in turn in the 
remainder of this section.

Relaxed Ordering

Relaxed ordering essentially guarantees nothing about concurrent 
access to the value beyond the fact that the access is atomic. In particular, 
relaxed ordering gives no guarantees about the relative ordering of mem-
ory accesses across different threads. This is the weakest form of memory 
ordering. Listing 10-2 shows a simple program in which two threads access 
two atomic variables using Ordering::Relaxed.

static X: AtomicBool = AtomicBool::new(false);
static Y: AtomicBool = AtomicBool::new(false);

let t1 = spawn(|| {
  1 let r1 = Y.load(Ordering::Relaxed);
  2 X.store(r1, Ordering::Relaxed);
});
let t2 = spawn(|| {
  3 let r2 = X.load(Ordering::Relaxed);
  4 Y.store(true, Ordering::Relaxed)
});

Listing 10-2: Two racing threads with Ordering::Relaxed

Looking at the thread spawned as t2, you might expect that r2 can 
never be true, since all values are false until the same thread assigns true to 
Y on the line after reading X. However, with a relaxed memory ordering, that 
outcome is completely possible. The reason is that the CPU is allowed to 
reorder the loads and stores involved. Let’s walk through exactly what hap-
pens here to make r2 = true possible.

First, the CPU notices that 4 doesn’t have to happen after 3, since 4 
doesn’t use any output or side effect of 3. That is, 4 has no execution depen-
dency on 3. So, the CPU decides to reorder them for *waves hands* reasons 
that’ll make your program go faster. The CPU thus goes ahead and executes 4 
first, setting Y = true, even though 3 hasn’t run yet. Then, t2 is put to sleep 
by the operating system and thread t1 executes a few instructions, or t1 sim-
ply executes on another core. In t1, the compiler must indeed run 1 first and 
then 2, since 2 depends on the value read in 1. Therefore, t1 reads true from 
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Y (written by 4) into r1 and then writes that back to X. Finally, t2 executes 3, 
which reads X and gets true, as was written by 2.

The relaxed memory ordering allows this execution because it imposes 
no additional constraints on concurrent execution. That is, under relaxed 
memory ordering, the compiler must ensure only that execution dependen-
cies on any given thread are respected (just as if atomics weren’t involved); 
it need not make any promises about the interleaving of concurrent opera-
tions. Reordering 3 and 4 is permitted for a single-threaded execution, so 
it is permitted under relaxed ordering as well.

In some cases, this kind of reordering is fine. For example, if you have a 
counter that just keeps track of metrics, it doesn’t really matter when exactly 
it executes relative to other instructions, and Ordering::Relaxed is fine. In 
other cases, this could be disastrous: say, if your program uses r2 to figure 
out if security protections have already been set up, and thus ends up erro-
neously believing that they already have been.

You don’t generally notice this reordering when writing code that 
doesn’t make fancy use of atomics—the CPU has to promise that there is 
no observable difference between the code as written and what each thread 
actually executes, so everything seems like it runs in order just as you wrote 
it. This is referred to as respecting program order or evaluation order; the 
terms are synonyms.

Acquire/Release Ordering

At the next step up in the memory ordering hierarchy, we have 
Ordering::Acquire, Ordering::Release, and Ordering::AcqRel (acquire plus 
release). At a high level, these establish an execution dependency between 
a store in one thread and a load in another and then restrict how opera-
tions can be reordered with respect to that load and store. Crucially, these 
dependencies not only establish a relationship between a store and a load of 
a single value, but also put ordering constraints on other loads and stores in 
the threads involved. This is because every execution must respect the pro-
gram order; if a load in thread B has a dependency on some store in thread 
A (the store in A must execute before the load in B), then any read or write 
in B after that load must also happen after that store in A.

N O T E  The Acquire memory ordering can be applied only to loads, Release only to stores, 
and AcqRel only to operations that both load and store (like fetch_add).

Concretely, these memory orderings place the following restrictions on 
execution:

1. Loads and stores cannot be moved forward past a store with 
Ordering::Release.

2. Loads and stores cannot be moved back before a load with 
Ordering::Acquire.

3. An Ordering::Acquire load of a variable must see all stores that happened 
before an Ordering::Release store that stored what the load loaded.



182   Chapter 10

To see how these memory orderings change things, Listing 10-3 shows 
Listing 10-2 again but with the memory ordering swapped out for Acquire 
and Release.

static X: AtomicBool = AtomicBool::new(false);
static Y: AtomicBool = AtomicBool::new(false);

let t1 = spawn(|| {
    let r1 = Y.load(Ordering::Acquire);
    X.store(r1, Ordering::Release);
});
let t2 = spawn(|| {
  1 let r2 = X.load(Ordering::Acquire);
  2 Y.store(true, Ordering::Release)
});

Listing 10-3: Listing 10-2 with Acquire/Release memory ordering

These additional restrictions mean that it is no longer possible for t2 to 
see r2 = true. To see why, consider the primary cause of the weird outcome 
in Listing 10-2: the reordering of 1 and 2. The very first restriction, on 
stores with Ordering::Release, dictates that we cannot move 1 below 2, so 
we’re all good!

But these rules are useful beyond this simple example. For example, 
imagine that you implement a mutual exclusion lock. You want to make 
sure that any loads and stores a thread runs while it holds the lock are exe-
cuted only while it’s actually holding the lock, and visible to any thread that 
takes the lock later. This is exactly what Release and Acquire enable you to 
do. By performing a Release store to release the lock and an Acquire load to 
acquire the lock, you can guarantee that the loads and stores in the critical 
section are never moved to before the lock was actually acquired or to after 
the lock was released!

N O T E  On some CPU architectures, like x86, Acquire/Release ordering is guaranteed 
by the hardware, and there is no additional cost to using Ordering::Release and 
Ordering::Acquire over Ordering::Relaxed. On other architectures that is not the 
case, and your program may see speedups if you switch to Relaxed for atomic opera-
tions that can tolerate the weaker memory ordering guarantees.

Sequentially Consistent Ordering

Sequentially consistent ordering (Ordering::SeqCst) is the strongest memory 
ordering we have access to. Its exact guarantees are somewhat hard to nail 
down, but very broadly, it requires not only that each thread sees results 
consistent with Acquire/Release, but also that all threads see the same order-
ing as one another. This is best seen by way of contrast with the behavior of 
Acquire and Release. Specifically,  Acquire/Release ordering does not guaran-
tee that if two threads A and B atomically load values written by two other 
threads X and Y, A and B will see a consistent pattern of when X wrote 
relative to Y. That’s fairly abstract, so consider the example in Listing 10-4, 
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which shows a case where Acquire/Release ordering can produce unexpected 
results. Afterwards, we’ll see how sequentially consistent ordering avoids 
that particular unexpected outcome.

static X: AtomicBool = AtomicBool::new(false);
static Y: AtomicBool = AtomicBool::new(false);
static Z: AtomicI32 = AtomicI32::new(0);

let t1 = spawn(|| {
    X.store(true, Ordering::Release);
});
let t2 = spawn(|| {
    Y.store(true, Ordering::Release);
});
let t3 = spawn(|| {
    while (!X.load(Ordering::Acquire)) {}
  1 if (Y.load(Ordering::Acquire)) {
        Z.fetch_add(1, Ordering::Relaxed); }
});
let t4 = spawn(|| {
    while (!Y.load(Ordering::Acquire)) {}
  2 if (X.load(Ordering::Acquire)) {
        Z.fetch_add(1, Ordering::Relaxed); }
});

Listing 10-4: Weird results with Acquire/Release ordering

The two threads t1 and t2 set X and Y to true, respectively. Thread t3 
waits for X to be true; once X is true, it checks if Y is true and, if so, adds 1 to 
Z. Thread t4 instead waits for Y to become true, and then checks if X is true 
and, if so, adds 1 to Z. At this point the question is: what are the possible 
values for Z after all the threads terminate? Before I show you the answer, 
try to work your way through it given the definitions of Release and Acquire 
ordering in the previous section.

First, let’s recap the conditions under which Z is incremented. Thread t3 
increments Z if it sees that Y is true after it observes that X is true, which can 
happen only if t2 runs before t3 evaluates the load at 1. Conversely, thread 
t4 increments Z if it sees that X is true after it observes that Y is true, so only if 
t1 runs before t4 evaluates the load at 2. To simplify the explanation, let’s 
assume for now that each thread runs to completion once it runs.

Logically, then, Z can be incremented twice if the threads run in the 
order 1, 2, 3, 4—both X and Y are set to true, and then t3 and t4 run to find 
that their conditions for incrementing Z are met. Similarly, Z can trivially 
be incremented just once if the threads run in the order 1, 3, 2, 4. This sat-
isfies t4’s condition for incrementing Z, but not t3’s. Getting Z to be 0, how-
ever, seems impossible: if we want to prevent t3 from incrementing Z, t2 has 
to run after t3. Since t3 runs only after t1, that implies that t2 runs after t1. 
However, t4 won’t run until after t2 has run, so t1 must have run and set X 
to true by the time t4 runs, and so t4 will increment Z.

Our inability to get Z to be 0 stems mostly from our human inclina-
tion for linear explanations; this happened, then this happened, then this 
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happened. Computers aren’t limited in the same way and have no need to 
box all events into a single global order. There’s nothing in the rules for 
Release and Acquire that says that t3 must observe the same execution order 
for t1 and t2 as t4 observes. As far as the computer is concerned, it’s fine 
to let t3 observe t1 as having executed first, while having t4 observe t2 as 
having executed first. With that in mind, an execution in which t3 observes 
that Y is false after it observes that X is true (implying that t2 runs after t1), 
while in the same execution t4 observes that X is false after it observes that 
Y is true (implying that t2 runs before t1), is completely reasonable, even if 
that seems outrageous to us mere humans.

As we discussed earlier, Acquire/Release requires only that an 
Ordering::Acquire load of a variable must see all stores that happened before 
an Ordering::Release store that stored what the load loaded. In the order-
ing just discussed, the computer did uphold that property: t3 sees X == true, 
and indeed sees all stores by t1 prior to it setting X = true—there are none. 
It also sees Y == false, which was stored by the main thread at program 
startup, so there aren’t any relevant stores to be concerned with. Similarly, 
t4 sees Y = true and also sees all stores by t2 prior to setting Y = true—again, 
there are none. It also sees X == false, which was stored by the main thread 
and has no preceding store. No rules are broken, yet it just seems wrong 
somehow.

Our intuitive expectation was that we could put the threads in some 
global order to make sense of what every thread saw and did, but that was 
not the case for Acquire/Release ordering in this example. To achieve some-
thing closer to that intuitive expectation, we need sequential consistency. 
Sequential consistency requires all the threads taking part in an atomic 
operation to coordinate to ensure that what each thread observes corre-
sponds to (or at least appears to correspond to) some single, common execu-
tion order. This makes it easier to reason about but also makes it costly.

Atomic loads and stores marked with Ordering::SeqCst instruct the com-
piler to take any extra precautions (such as using special CPU instructions) 
needed to guarantee sequential consistency for those loads and stores. The 
exact formalism around this is fairly convoluted, but sequential consistency 
essentially ensures that if you looked at all the related SeqCst operations 
from across all your threads, you could put the thread executions in some 
order so that the values that were loaded and stored would all match up.

If we replaced all the memory ordering arguments in Listing 10-4 with 
SeqCst, Z could not possibly be 0 after all the threads have exited, just as we 
originally expected. Under sequential consistency, it must be possible to say 
either that t1 definitely ran before t2 or that t2 definitely ran before t1, so 
the execution where t3 and t4 see different orders is not allowed, and thus Z 
cannot be 0.

Compare and Exchange
In addition to load and store, all of Rust’s atomic types provide a method 
called compare_exchange. This method is used to atomically and condition-
ally replace a value. You provide compare_exchange with the last value you 
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observed for an atomic variable and the new value you want to replace the 
original value with, and it will replace the value only if it is still the same as 
it was when you last observed it. To see why this is important, take a look 
at the (broken) implementation of a mutual exclusion lock in Listing 10-5. 
This implementation keeps track of whether the lock is held in the static 
atomic variable LOCK. We use the Boolean value true to represent that the 
lock is held. To acquire the lock, a thread waits for LOCK to be false, then 
sets it to true again; it then enters its critical section and sets LOCK to false 
to release the lock when its work (f) is done.

static LOCK: AtomicBool = AtomicBool::new(false);

fn mutex(f: impl FnOnce()) {
    // Wait for the lock to become free (false).
    while LOCK.load(Ordering::Acquire)
      { /* .. TODO: avoid spinning .. */ }
    // Store the fact that we hold the lock.
    LOCK.store(true, Ordering::Release);
    // Call f while holding the lock.
    f();
    // Release the lock.
    LOCK.store(false, Ordering::Release);
}

Listing 10-5: An incorrect implementation of a mutual exclusion lock

This mostly works, but it has a terrible flaw—two threads might both 
see LOCK == false at the same time and both leave the while loop. Then they 
both set LOCK to true and both enter the critical section, which is exactly 
what the mutex function was supposed to prevent!

The issue in Listing 10-5 is that there is a gap between when we load 
the current value of the atomic variable and when we subsequently update 
it, during which another thread might get to run and read or touch its 
value. It is exactly this problem that compare_exchange solves—it swaps out the 
value behind the atomic variable only if its value still matches the previous 
read, and otherwise notifies you that the value has changed. Listing 10-6 
shows the corrected implementation using compare_exchange.

static LOCK: AtomicBool = AtomicBool::new(false);

fn mutex(f: impl FnOnce()) {
    // Wait for the lock to become free (false).
    loop {
      let take = LOCK.compare_exchange(
          false,
          true,
          Ordering::AcqRel,
          Ordering::Relaxed
      );
      match take {
        Ok(false) => break,
        Ok(true) | Err(false) => unreachable!(),
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        Err(true) => { /* .. TODO: avoid spinning .. */ }
      }
    }
    // Call f while holding the lock.
    f();
    // Release the lock.
    LOCK.store(false, Ordering::Release);
}

Listing 10-6: A corrected implementation of a mutual exclusion lock

This time around, we use compare_exchange in the loop, and it takes care 
of both checking that the lock is currently not held and storing true to take 
the lock as appropriate. This happens through the first and second argu-
ments to compare_exchange, respectively: in this case, false and then true. You 
can read the invocation as “Store true only if the current value is false.” 
The compare_exchange method returns a Result that indicates either that the 
value was successfully updated (Ok) or that it could not be updated (Err). 
In either case, it also returns the current value. This isn’t too useful with 
an AtomicBool since we know what the value must be if the operation failed, 
but for something like an AtomicI32, the updated current value will let you 
quickly recompute what to store and then try again without having to do 
another load.

N O T E  Note that compare_exchange checks only whether the value is the same as the one that 
was passed in as the current value. If some other thread modifies the atomic variable’s 
value and then resets it to the original value again, a compare_exchange on that vari-
able will still succeed. This is often referred to as the A-B-A problem.

Unlike simple loads and stores, compare_exchange takes two Ordering argu-
ments. The first is the “success ordering,” and it dictates what memory 
ordering should be used for the load and store that the compare_exchange 
represents in the case that the value was successfully updated. The second 
is the “failure ordering,” and it dictates the memory ordering for the load 
if the loaded value does not match the expected current value. These two 
orderings are kept separate so that the developer can give the CPU leeway 
to improve execution performance by reordering loads and stores on fail-
ure when appropriate, but still get the correct ordering on success. In this 
case, it’s okay to reorder loads and stores across failed iterations of the lock 
acquisition loop, but it’s not okay to reorder loads and stores inside the criti-
cal section in such a way that they end up outside of it.

Even though its interface is simple, compare_exchange is a very powerful 
synchronization primitive—so much so that it’s been theoretically proven 
that you can build all other distributed consensus primitives using only 
compare_exchange! For that reason, it is the workhorse of many, if not most, 
synchronization constructs when you really dig into the implementation 
details.

Be aware, though, that a compare_exchange requires that a single CPU has 
exclusive access to the underlying value, and it is therefore a form of mutual 
exclusion at the hardware level. This in turn means that compare_exchange 
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can quickly become a scalability bottleneck: only one CPU can make prog-
ress at a time, so there’s a portion of your code that will not scale with the 
number of cores. In fact, it’s probably worse than that—the CPUs have to 
coordinate to ensure that only one CPU succeeds at a compare_exchange for a 
variable at a time (take a look at the MESI protocol if you’re curious about 
how that works), and that coordination grows quadratically more costly the 
more CPUs are involved!

COMPA R E _ E XCH A NGE _W E A K

The careful documentation reader will notice that compare_exchange has a suspi-
ciously named cousin, compare_exchange_weak, and wonder what the difference 
is . The weak variant of compare_exchange is allowed to fail even if the atomic 
variable’s value does still match the expected value that the user passed in, 
whereas the strong variant must succeed in this case .

This might seem odd—how could an atomic value swap fail except if the 
value has changed? The answer lies in system architectures that do not have a 
native compare_exchange operation . For example, ARM processors instead have 
locked load and conditional store operations, where a conditional store will fail 
if the value read by an associated locked load has not been written to since 
the load . The Rust standard library implements compare_exchange on ARM by 
calling this pair of instructions in a loop and returning only once the conditional 
store succeeds . This makes the code in Listing 10-6 needlessly inefficient—we 
end up with a nested loop, which requires more instructions and is harder to 
optimize . Since we already have a loop in this case, we could instead use com-
pare_exchange_weak, remove the unreachable!() on Err(false), and get better 
machine code on ARM and the same compiled code on x86!

The Fetch Methods
Fetch methods (fetch_add, fetch_sub, fetch_and, and the like) are designed to 
allow more efficient execution of atomic operations that commute—that 
is, operations that have meaningful semantics regardless of the order they 
execute in. The motivation for this is that the compare_exchange method 
is powerful, but also costly—if two threads both want to update a single 
atomic variable, one will succeed, while the other will fail and have to retry. 
If many threads are involved, they all have to mediate sequential access to 
the underlying value, and there will be plenty of spinning while threads 
retry on failure.

For simple operations that commute, rather than fail and retry just 
because another thread modified the value, we can tell the CPU what 
operation to perform on the atomic variable. It’ll then perform that opera-
tion on whatever the current value happens to be when the CPU eventually 
gets exclusive access. Think of an AtomicUsize that counts the number of 
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operations a pool of threads has completed. If two threads both complete a 
job at the same time, it doesn’t matter which one updates the counter first 
as long as both their increments are counted.

The fetch methods implement these kinds of commutative opera-
tions. They perform a read and a store operation in a single step and 
guarantee that the store operation was performed on the atomic variable 
when it held exactly the value returned by the method. As an example, 
AtomicUsize::fetch_add(1, Ordering::Relaxed) never fails—it always adds 1 to 
the current value of the AtomicUsize, no matter what it is, and returns the 
value of the AtomicUsize precisely when this thread’s 1 was added.

The fetch methods tend to be more efficient than compare_exchange 
because they don’t require threads to fail and retry when multiple threads 
contend for access to a variable. Some hardware architectures even have 
specialized fetch method implementations that scale much better as the 
number of involved CPUs grows. Nevertheless, if enough threads try to 
operate on the same atomic variable, those operations will begin to slow 
down and exhibit sublinear scaling due to the coordination required. In 
general, the best way to significantly improve the performance of a concur-
rent algorithm is to split contended variables into more atomic variables 
that are each less contended, rather than switching from compare_exchange to 
a fetch method.

N O T E  The fetch_update method is somewhat deceptively named—behind the scenes, it is 
really just a compare_exchange_weak loop, so its performance profile will more closely 
match that of compare_exchange than the other fetch methods.

Sane Concurrency
Writing correct and performant concurrent code is harder than writing 
sequential code; you have to consider not only possible execution interleav-
ings but also how your code interacts with the compiler, the CPU, and the 
memory subsystem. With such a wide array of footguns at your disposal, it’s 
easy to want to throw your hands in the air and just give up on concurrency 
altogether. In this section we’ll explore some techniques and tools that can 
help ensure that you write correct concurrent code without (as much) fear.

Start Simple
It is a fact of life that simple, straightforward, easy-to-follow code is more 
likely to be correct. This principle also applies to concurrent code—always 
start with the simplest concurrent design you can think of, then measure, 
and only if measurement reveals a performance problem should you opti-
mize your algorithm.

To follow this tip in practice, start out with concurrency patterns that 
do not require intricate use of atomics or lots of fine-grained locks. Begin 
with multiple threads that run sequential code and communicate over 
channels, or that cooperate through locks, and then benchmark the result-
ing performance with the workload you care about. You’re much less likely 
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to make mistakes this way than by implementing fancy lockless algorithms 
or by splitting your locks into a thousand pieces to avoid false sharing. For 
many use cases, these designs are plenty fast enough; it turns out a lot of 
time and effort has gone into making channels and locks perform well! 
And if the simple approach is fast enough for your use case, why introduce 
more complex and error-prone code?

If your benchmarks indicate a performance problem, then figure out 
exactly which part of your system scales poorly. Focus on fixing that bottle-
neck in isolation where you can, and try to do so with small adjustments 
where possible. Maybe it’s enough to split a lock in two rather than move 
to a concurrent hash table, or to introduce another thread and a channel 
rather than implement a lock-free work stealing queue. If so, do that.

Even when you do have to work directly with atomics and the like, keep 
things simple until there’s a proven need to optimize—use Ordering::SeqCst 
and compare_exchange at first, and then iterate if you find concrete evidence 
that those are becoming bottlenecks that must be taken care of.

Write Stress Tests
As the author, you have a lot of insight into where bugs in your code 
may hide, without necessarily knowing what those bugs are (yet, anyway). 
Writing stress tests is a good way to shake out some of the hidden bugs. 
Stress tests don’t necessarily perform a complex sequence of steps but 
instead have lots of threads doing relatively simple operations in parallel.

For example, if you were writing a concurrent hash map, one stress test 
might be to have N threads insert or update keys and M threads read keys 
in such a way that those M+N threads are likely to often choose the same 
keys. Such a test doesn’t test for a particular outcome or value but instead 
tries to trigger many possible interleavings of operations in the hopes that 
buggy interleavings might reveal themselves.

Stress tests resemble fuzz tests in many ways; whereas fuzzing gener-
ates many random inputs to a given function, the stress test instead gen-
erates many random thread and memory access schedules. Just like fuzzers, 
stress tests are therefore only as good as the assertions in your code; they 
can’t tell you about a bug that doesn’t manifest in some easy-to-spot way 
like an assertion failure or some other kind of panic. For that reason, it’s a 
good idea to litter your low-level concurrency code with assertions, or debug_
assert_* if you’re worried about runtime cost in particularly hot loops.

Use Concurrency Testing Tools
The primary challenge in writing concurrent code is to handle all the pos-
sible ways the execution of different threads can interleave. As we saw in the 
Ordering::SeqCst example in Listing 10-4, it’s not just the thread scheduling 
that matters, but also which memory values are possible for a given thread 
to observe at any given point in time. Writing tests that execute every pos-
sible legal execution is not only tedious but also difficult—you need very 
low-level control over which threads execute when and what values their 
reads return, which the operating system likely doesn’t provide.
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Model Checking with Loom

Luckily, a tool already exists that can simplify this execution exploration 
for you in the form of the loom crate. Given the relative release cycles of this 
book and that of a Rust crate, I won’t give any examples of how to use Loom 
here, as they’d likely be out of date by the time you read this book, but I will 
give an overview of what it does.

Loom expects you to write dedicated test cases in the form of closures 
that you pass into a Loom model. The model keeps track of all cross-thread 
interactions and tries to intelligently explore all possible iterations of those 
interactions by executing the test case closure multiple times. To detect 
and control thread interactions, Loom provides replacement types for all 
the types in the standard library that allow threads to coordinate with one 
another; that includes most types under std::sync and std::thread as well 
as UnsafeCell and a few others. Loom expects your application to use those 
replacement types whenever you run the Loom tests. The replacement 
types tie into the Loom executor and perform a dual function: they act as 
rescheduling points so that Loom can choose which operation to run next 
after each possible thread interaction point, and they inform Loom of new 
possible interleavings to consider. Essentially, Loom builds up a tree of all 
the possible future executions for each point at which multiple execution 
interleavings are possible and then tries to execute all of them, one after 
the other.

Loom attempts to fully explore all possible executions of the test 
cases you provide it with, which means it can find bugs that occur only in 
extremely rare executions that stress testing would not find in a hundred 
years. While that’s great for smaller test cases, it’s generally not feasible 
to apply that kind of rigorous testing to larger test cases that test more 
involved sequences of operations or require many threads to run at once. 
Loom would simply take too long to get decent coverage of the code. In 
practice, you may therefore want to tell Loom to consider only a subset of 
the possible executions, which Loom’s documentation has more details on.

Like with stress tests, Loom can catch only bugs that manifest as panics, 
so that’s yet another reason to spend some time placing strategic assertions 
in your concurrent code! In many cases, it may even be worthwhile to add 
additional state tracking and bookkeeping instructions to your concurrent 
code to give you better assertions.

Runtime Checking with ThreadSanitizer

For larger test cases, your best bet is to run the test through a couple of itera-
tions under Google’s excellent ThreadSanitizer, also known as TSan. TSan 
automatically augments your code by placing extra bookkeeping instructions 
prior to every memory access. Then, as your code runs, those bookkeeping 
instructions update and check a special state machine that flags any con-
current memory operations that indicate a problematic race condition. For 
example, if thread B writes to some atomic value X, but has not synchronized 
(lots of hand waving here) with the thread that wrote the previous value of X 
that indicates a write/write race, which is nearly always a bug.
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Since TSan only observes your code running and does not execute 
it over and over again like Loom, it generally only adds a constant-factor 
overhead to the runtime of your program. While that factor can be signifi-
cant (5–15 times at the time of writing), it’s still small enough that you can 
execute even most complex test cases in a reasonable amount of time.

At the time of writing, to use TSan you need to use a nightly version of 
the Rust compiler and pass in the -Zsanitizer=thread command-line argu-
ment (or set it in RUSTFLAGS), though hopefully in time this will be a standard 
supported option. Other sanitizers are also available that check things like 
out-of-bounds memory accesses, use-after-free, memory leaks, and reads of 
uninitialized memory, and you may want to run your concurrent test suite 
through those too!

HE ISENBUGS

Heisenbugs are bugs that seem to disappear when you try to study them . This 
happens quite frequently when trying to debug highly concurrent code; the 
additional instrumentation to debug the problem changes the relative timing of 
concurrent events and might cause the execution interleaving that triggered the 
bug to no longer happen .

A particularly common cause of disappearing concurrency bugs is using 
print statements, which is by far one of the most common debugging techniques . 
There are two reasons why print statements have such an outsized effect on 
concurrency bugs . The first, and perhaps most obvious, is that relatively speak-
ing, printing something to the user’s terminal (or wherever standard output 
points) takes quite a long time, especially if your program is producing a lot 
of output . Writing to the terminal requires, at the very least, a round-trip to the 
operating system kernel to perform the write, but the write may also have to 
wait for the terminal itself to read from the process’s output into its own buffers . 
All that extra time might so much delay the operation that previously raced with 
an operation in some other thread that the race condition disappears .

The second reason why print statements disturb concurrent execution pat-
terns is that writing to standard output is (generally) guarded by a lock . If you look 
inside the Stdout type in the standard library, you’ll see that it holds a Mutex that 
guards access to the output stream . It does this so that the output isn’t garbled too 
badly if multiple threads try to write at the same time—without a lock, a given 
line might have characters interspersed from multiple thread writes, but with the 
lock the threads will take turns writing instead . Unfortunately, acquiring the output 
lock, is another thread synchronization point, and one that every printing thread is 
involved in . This means that if your code was previously broken due to missing syn-
chronization between two threads, or just because a particular race between two 
threads was possible, adding print statements might fix that bug as a side effect!

In general, when you spot what seems like a Heisenbug, try to find other 
ways to narrow down the problem . That might involve using Loom or TSan, 

(continued)
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using gdb or lldb, or using a per-thread in-memory log that you print only at the 
end . Many logging frameworks also work hard to avoid synchronization points 
on the critical path of issuing log events, so switching to one of those might 
make your life easier . As an added bonus, good logging that you leave behind 
after fixing a particular bug might come in handy later . Personally I’m a big fan 
of the tracing crate, but there are many good options out there .

Summary
In this chapter, we first covered common correctness and performance pit-
falls in concurrent Rust, and some of the high-level concurrency patterns 
that successful concurrent applications tend to use to work around them. 
We also explored how asynchronous Rust enables concurrency without par-
allelism, and how to explicitly introduce parallelism in asynchronous Rust 
code. We then dove deeper into Rust’s many different lower-level concur-
rency primitives, including how they work, how they differ, and what they’re 
all for. Finally, we explored techniques for writing better concurrent code 
and looked at tools like Loom and TSan that can help you vet that code. In 
the next chapter we’ll continue our journey through the lower levels of Rust 
by digging into foreign function interfaces, which allow Rust code to link 
directly against code written in other languages.
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F O R E I G N  F U N C T I O N  I N T E R F A C E S

Not all code is written in Rust. It’s shocking, 
I know. Every so often, you’ll need to inter-

act with code written in other languages, 
either by calling into such code from Rust or 

by allowing that code to call your Rust code. You can 
achieve this through foreign function interfaces (FFI).

In this chapter we’ll first look at the primary mechanism Rust provides 
for FFI: the extern keyword. We’ll see how to use extern both to expose Rust 
functions and statics to other languages and to give Rust access to func-
tions and static variables provided from outside the Rust bubble. Then, we’ll 
walk through how to align Rust types with types defined in other languages 
and explore some of the intricacies of allowing data to flow across the FFI 
boundary. Finally, we’ll talk about some of the tools you’ll likely want to use 
if you’re doing any nontrivial amount of FFI.
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N O T E  While I often refer to FFI as being about crossing the boundary between one language 
and another, FFI can also occur entirely inside Rust-land. If one Rust program shares 
memory with another Rust program but the two aren’t compiled together—say, if you’re 
using a dynamically linked library in your Rust program that happens to be written in 
Rust, but you just have the C-compatible .so file—the same complications arise.

Crossing Boundaries with extern
FFI is, ultimately, all about accessing bytes that originate somewhere out-
side your application’s Rust code. For that, Rust provides two primary build-
ing blocks: symbols, which are names assigned to particular addresses in a 
given segment of your binary that allow you to share memory (be it for data 
or code) between the external origin and your Rust code, and calling conven-
tions that provide a common understanding of how to call functions stored 
in such shared memory. We’ll look at each of these in turn.

Symbols
Any binary artifact that the compiler produces from your code is filled with 
symbols—every function or static variable you define has a symbol that 
points to its location in the compiled binary. Generic functions may even 
have multiple symbols, one for each monomorphization of the function the 
compiler generates!

Normally, you don’t have to think about symbols—they’re used inter-
nally by the compiler to pass around the final address of a function or 
static variable in your binary. This is how the compiler knows what location 
in memory each function call should target when it generates the final 
machine code, or where to read from if your code accesses a static variable. 
Since you don’t usually refer to symbols directly in your code, the compiler 
defaults to choosing semirandom names for them—you may have two func-
tions called foo in different parts of your code, but the compiler will gener-
ate distinct symbols from them so that there’s no confusion.

However, using random names for symbols won’t work when you want 
to call a function or access a static variable that isn’t compiled at the same 
time, such as code that’s written in a different language and thus compiled 
by a different compiler. You can’t tell Rust about a static variable defined in 
C if the symbol for that variable has a semirandom name that keeps chang-
ing. Conversely, you can’t tell Python’s FFI interface about a Rust function if 
you can’t produce a stable name for it.

To use a symbol with an external origin, we also need some way to tell 
Rust about a variable or function in such a manner that the compiler will 
look for that same symbol defined elsewhere rather than defining its own 
(we’ll talk about how that search happens later). Otherwise, we would just 
end up with two identical symbols for that function or static variable, and 
no sharing would take place. In fact, in all likelihood, compilation would 
fail since any code that referred to that symbol wouldn’t know which defini-
tion (that is, which address) to use for it!



Foreign Function Interfaces   195

N O T E  A quick note about terminology: a symbol can be declared multiple times but 
defined only once. Every declaration of a symbol will link to the same single defini-
tion for that symbol at linking time. If no definition for a declaration is found, or if 
there are multiple definitions, the linker will complain.

An Aside on Compilation and Linking

Compiler crash course time! Having a rough idea of the complicated pro-
cess of turning code into a runnable binary will help you understand FFI 
better. You see, the compiler isn’t one monolithic program but is (typically) 
broken down into a handful of smaller programs that each perform distinct 
tasks and run one after the other. At a high level, there are three distinct 
phases to compilation—compilation, code generation, and linking—handled by 
three different components.

The first phase is performed by what most people tend to think of 
as “the compiler”; it deals with type checking, borrow checking, mono-
morphization, and other features we associate with a given programming 
language. This phase generates no machine code but rather a low-level 
representation of the code that uses heavily annotated abstract machine 
operations. That low-level representation is then passed to the code genera-
tion tool, which is what produces machine code that can actually run on a 
given CPU.

These two operations, taken together, do not have to be run in a single 
big pass over the whole codebase all at once. Instead, the codebase can be 
sliced into smaller chunks that are then run through compilation concur-
rently. For example, Rust generally compiles different crates independently 
and in parallel as long as there isn’t a dependency between them. It can also 
invoke the code generation tool for independent crates separately to pro-
cess them in parallel. Rust can often even compile multiple smaller slices of 
a single crate separately!

Once the machine code for every piece of the application has been 
generated, those pieces can then be wired together. This is done in the 
linking phase by, unsurprisingly, the linker. The linker’s primary job is to 
take all the binary artifacts, called object files, produced by code generation, 
stitch them together into a single file, and then replace every reference to a 
symbol with the final memory address of that symbol. This is how you can 
define a function in one crate and call it from another but still compile the 
two crates separately.

The linker is what enables FFI to work. It doesn’t care how each of the 
input object files were constructed; it just dutifully links together all the 
object files and then resolves any shared symbols. One object file may origi-
nally have been Rust code, one originally C code, and one may be a binary 
blob downloaded from the internet; as long as they all use the same symbol 
names, the linker will make sure that the resulting machine code uses the 
correct cross-referenced addresses for any shared symbols.

A symbol can be linked either statically or dynamically. Static linking 
is the simplest, as each reference to a symbol is simply replaced with the 
address of that symbol’s definition. Dynamic linking, on the other hand, 
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ties each reference to a symbol to a bit of generated code that tries to find 
the symbol’s definition when the program runs. We’ll talk more about these 
linking modes a little later. Rust generally defaults to static linking for Rust 
code, and dynamic linking for FFI.

Using extern

The extern keyword is the mechanism that allows us to declare a symbol as 
residing within a foreign interface. Specifically, it declares the existence of 
a symbol that’s defined elsewhere. In Listing 11-1 we define a static variable 
called RS_DEBUG in Rust that we make available to other code via FFI. We also 
declare a static variable called FOREIGN_DEBUG whose definition is unspecified 
but will be resolved at linking time.

#[no_mangle]
pub static RS_DEBUG: bool = true;

extern {
    static FOREIGN_DEBUG: bool;
}

Listing 11-1: Exposing a Rust static variable, and accessing one declared elsewhere, 
through FFI

The #[no_mangle] attribute ensures that RS_DEBUG retains that name dur-
ing compilation rather than having the compiler assign it another symbol 
name to, for example, distinguish it from another (non-FFI) RS_DEBUG static 
variable elsewhere in the program. The variable is also declared as pub since 
it’s a part of the crate’s public API, though that annotation isn’t strictly 
necessary on items marked #[no_mangle]. Note that we don’t use extern for 
RS_DEBUG, since it’s defined here. It will still be accessible to link against from 
other languages.

The extern block surrounding the FOREIGN_DEBUG static variable denotes 
that this declaration refers to a location that Rust will learn at linking 
time based on where the definition of the same symbol is located. Since 
it’s defined elsewhere, we don’t give it an initialization value, just a type, 
which should match the type used at the definition site. Because Rust 
doesn’t know anything about the  code that defines the static variable, 
and thus can’t check that you’ve declared the correct type for the symbol, 
FOREIGN_DEBUG can be accessed only inside an unsafe block.

N O T E  Static variables in Rust aren’t mutable by default, regardless of whether they’re in an 
extern block. These variables are always available from any thread, so mutable access 
would pose a data race risk. You can declare a static as mut, but if you do, it becomes 
unsafe to access.

The procedure to declare FFI functions is very similar. In Listing 11-2, 
we make hello_rust accessible to non-Rust code and pull in the external 
hello_foreign function.
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#[no_mangle]
pub extern fn hello_rust(i: i32) { ... }

extern {
    fn hello_foreign(i: i32);
}

Listing 11-2: Exposing a Rust function, and accessing one defined elsewhere, through FFI

The building blocks are all the same as in Listing 11-1 with the excep-
tion that the Rust function is declared using extern fn, which we’ll explore 
in the next section.

If there are multiple definitions of a given extern symbol like FOREIGN_
DEBUG or hello_foreign, you can explicitly specify which library the symbol 
should link against using the #[link] attribute. If you don’t, the linker will 
give you an error saying that it’s found multiple definitions for the symbol 
in question. For example, if you prefix an extern block with #[link(name = 
"crypto")], you’re telling the linker to resolve any symbols (whether statics 
or functions) against a linked library named “crypto.” You can also rename 
an external static or function in your Rust code by annotating its declara-
tion with #[link_name = "<actual_symbol_name>"], and then the item links to 
whatever name you wish. Similarly, you can rename a Rust item for export 
using #[export_name = "<export_symbol_name>"].

Link Kinds

#[link] also accepts the argument kind, which dictates how the items in the 
block should be linked. The argument defaults to "dylib", which signifies 
C-compatible dynamic linking. The alternative kind value is "static", which 
indicates that the items in the block should be linked fully at compile time 
(that is, statically). This essentially means that the external code is wired 
directly into the binary produced by the compiler , and thus doesn’t need to 
exist at runtime. There are a few other kinds as well, but they are much less 
common and outside the scope of this book.

There are several trade-offs between static and dynamic linking, but the 
main considerations are security, binary size, and distribution. First, dynamic 
linking tends to be more secure because it makes it easier to upgrade librar-
ies independently. Dynamic linking allows whoever deploys a binary that con-
tains your code to upgrade libraries your code links against without having 
to recompile your code. If, say, libcrypto gets a security update, the user can 
update the crypto library on the host and restart the binary, and the updated 
library code will be used automatically. With static compilation, the library’s 
code is hardwired into the binary, so the user would have to recompile your 
code against an upgraded version of the library to get the update.

Dynamic linking also tends to produce smaller binaries. Since static 
compilation includes any linked code into the final binary output, and any 
code that code in turn pulls in, it produces larger binaries. With dynamic 
linking, each external item includes just a small bit of wrapper code that 
loads the indicated library at runtime and then forwards the access.
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So far, static linking may not seem very attractive, but it has one big advan-
tage over dynamic linking: ease of distribution. With dynamic linking, anyone 
who wants to run a binary that includes your code must also have any libraries 
your code links against. Not only that, but they must make sure the version of 
each such library they have is compatible with what your code expects. This 
may be fine for libraries like glibc or OpenSSL that are available on most sys-
tems, but it poses a problem for more obscure libraries. The user then needs 
to be aware that they should install that library and must hunt for it in order to 
run your code! With static linking, the library’s code is embedded directly into 
the binary output, so the user doesn’t need to install it themselves.

Ultimately, there isn’t a right choice between static and dynamic linking. 
Dynamic linking is usually a good default, but static compilation may be a 
better option for particularly constrained deployment environments or for 
very small or niche library dependencies. Use your best judgment!

Calling Conventions
Symbols dictate where a given function or variable is defined, but that’s not 
enough to allow function calls across FFI boundaries. To call a foreign 
function in any language, the compiler also needs to know its calling conven-
tion, which dictates the assembly code to use to invoke the function. We 
won’t get into the actual technical details of each calling convention here, 
but as a general overview, the convention dictates:

•	 How the stack frame for the call is set up

•	 How arguments are passed (whether on the stack or in registers, in 
order or in reverse)

•	 How the function is told where to jump back to when it returns

•	 How various CPU states, like registers, are restored in the caller after 
the function completes

Rust has its own unique calling convention that isn’t standardized and 
is allowed to be changed by the compiler over time. This works fine as long 
as all function definitions and calls are compiled by the same Rust com-
piler, but it is problematic if you want interoperability with external code 
because that external code doesn’t know about the Rust calling convention.

Every Rust function is implicitly declared with extern "Rust" if you don’t 
declare anything else. Using extern on its own, as in Listing 11-2, is short-
hand for extern "C", which means “use the standard C calling convention.” 
The shorthand is there because the C calling convention is what you want 
in nearly every case of FFI.

N O T E  Unwinding generally works only with regular Rust functions. If you unwind 
across the end of a Rust function that isn’t extern "Rust", your program will abort. 
Unwinding across the FFI boundary into external code is undefined behavior. With 
RFC 2945, Rust gained a new extern declaration, extern "C-unwind"; this permits 
unwinding across FFI boundaries in particular situations, but if you wish to use it 
you should read the RFC carefully.
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Rust also supports a number of other calling conventions that you supply 
as a string following the extern keyword (in both fn and block context). For 
example, extern "system" says to use the calling convention of the operating 
system’s standard library interface, which at the time of writing is the same 
as "C" everywhere except on Win32, which uses the "stdcall" calling conven-
tion. In general, you’ll rarely need to supply a calling convention explicitly 
unless you’re working with particularly platform-specific or highly optimized 
external interfaces, so just extern (which is extern "C") will be fine.

N O T E  A function’s calling convention is part of its type. That is, the type extern "C" fn() 
is not the same as fn() (or extern "Rust" fn()), which is different again from extern 
"system" fn().

OT HER BIN A RY A R T IFAC T S

Normally, you compile Rust code only to run its tests or build a binary that 
you’re then going to distribute or run . Unlike in many other languages, you 
don’t generally compile a Rust library to distribute it to others—if you run a com-
mand like cargo publish, it just wraps up your crate’s source code and uploads 
it to crates.io . This is mostly because it is difficult to distribute generic code as 
anything but source code . Since the compiler monomorphizes each generic 
function to the provided type arguments, and those types may be defined in 
the caller’s crate, the compiler must have access to the function’s generic form, 
which means no optimized machine code!

Technically speaking, Rust does compile binary library artifacts, called rlibs, 
of each dependency that it combines in the end . These rlibs include the informa-
tion necessary to resolve generic types, but they are specific to the exact com-
piler used and can’t generally be distributed in any meaningful way .

So what do you do if you want to write a library in Rust that you then 
want to interface with from another programming language? The solution is to 
produce C-compatible library files in the form of dynamically linked libraries 
(.so files on Unix, .dylib files on macOS, and .dll files on Windows) and stati-
cally linked libraries (.a files on Unix/macOS and .lib files on Windows) . Those 
files look like files produced by C code, so they can also be used by other lan-
guages that know how to interact with C .

To produce these C-compatible binary artifacts, you set the crate-type 
field of the [lib] section of your Cargo.toml file . The field takes an array of val-
ues, which would normally just be "lib" to indicate a standard Rust library (an 
rlib) . Cargo applies some heuristics that will set this value automatically if your 
crate is clearly not a library (for example, if it's a procedural macro), but best 
practice is to set this value explicitly if you’re producing anything but a good ol’ 
Rust library .

There are a number of different crate types, but the relevant ones here are 
"cdylib" and "staticlib", which produce C-compatible library files that are 
dynamically and statically linked, respectively . Keep in mind that when you 

(continued)
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produce one of these artifact types, only publicly available symbols are avail-
able—that is, public and #[no_mangle] static variables and functions . Things like 
types and constants won’t be available, even if they’re marked pub, since they 
have no meaningful representation in a binary library file .

Types Across Language Boundaries
With FFI, type layout is crucial; if one language lays out the memory for 
some shared data one way but the language on the other side of the FFI 
boundary expects it to be laid out differently, then the two sides will inter-
pret the data inconsistently. In this section, we’ll look at how to make types 
match up over FFI, and other aspects of types to be aware of when you cross 
the boundaries between languages.

Type Matching
Types aren’t shared across the FFI boundary. When you declare a type in 
Rust, that type information is lost entirely upon compilation. All that’s com-
municated to the other side is the bits that make up values of that type. 
You therefore need to declare the type for those bits on both sides of the 
boundary. When you declare the Rust version of the type, you first must 
make sure the primitives contained within the type match up. For example, 
if C is used on the other side of the boundary, and the C type uses an int, 
the Rust code had better use the exact Rust equivalent: an i32. To take 
some of the guesswork out of that process, for interfaces that use C-like 
types the Rust standard library provides you with the correct C types in 
the std::os::raw module, which defines type c_int = i32, type c_char = i8/
u8 depending on whether char is signed, type c_long = i32/i64 depending on 
the target pointer width, and so on.

N O T E  Take particular note of quirky integer types in C like __be32. These often do not trans-
late directly to Rust types and may be best left as something like [u8; 4]. For example, 
__be32 is always encoded as big-endian, whereas Rust’s i32 uses the endianness of the 
current platform.

With more complex types like vectors and strings, you usually need 
to do the mapping manually. For example, since C tends to represent 
a string as a sequence of bytes terminated with a 0 byte, rather than a 
UTF-8–encoded string with the length stored separately, you cannot gen-
erally use Rust’s string types over FFI. Instead, assuming the other side 
uses a C-style string representation, you should use the std::ffi::CStr and 
std::ffi::CString types for borrowed and owned strings, respectively. For 
vectors, you’ll likely want to use a raw pointer to the first element and then 
pass the length separately—the Vec::into_raw_parts method may come in 
handy for that.



Foreign Function Interfaces   201

For types that contain other types, such as structs and unions, you also 
need to deal with layout and alignment. As we discussed in Chapter 2, Rust 
lays out types in an undefined way by default, so at the very least you will 
want to use #[repr(C)] to ensure that the type has a deterministic layout and 
alignment that mirrors what’s (likely and hopefully) used across the FFI 
boundary. If the interface also specifies other configurations for the type, 
such as manually setting its alignment or removing padding, you’ll need to 
adjust your #[repr] accordingly.

A Rust enum has multiple possible C-style representations depending 
on whether the enum contains data or not. Consider an enum without data, 
like this:

enum Foo { Bar, Baz }

With #[repr(C)], the type Foo is encoded using just a single integer of 
the same size that a C compiler would choose for an enum with the same 
number of variants. The first variant has the value 0, the second the value 1, 
and so on. You can also manually assign values to each variant, as shown in 
Listing 11-3.

#[repr(C)]
enum Foo {
    Bar = 1,
    Baz = 2,
}

Listing 11-3: Defining explicit variant values for a dataless enum

N O T E  Technically, the specification says that the first variant’s value is 0 and every subse-
quent variant’s value is one greater than that of the previous one. This makes a dif-
ference if you manually set the value for some variants but not others—those you do 
not set will continue from the last one you did set.

You should be careful about mapping enum-like types in C to Rust 
this way, however, as only the values for defined variants are valid for an 
instance of the enum type. This tends to get you into trouble with C-style 
enumerations that often function more like bitsets, where variants can be 
bitwise ORed together to produce a value that encapsulates multiple vari-
ants at once. In the example from Listing 11-3, for instance, a value of 3 pro-
duced by taking Bar | Baz would not be valid for Foo in Rust! If you need to 
model a C API that uses an enumeration for a set of bitflags that can be set 
and unset individually, consider using a newtype wrapper around an inte-
ger type, with associated constants for each variant and implementations of 
the various Bit* traits for improved ergonomics. Or use the bitflags crate.

N O T E  For fieldless enums, you can also pass a numeric type to #[repr] to use a different 
type than isize for the discriminator. For example, #[repr(u8)] will encode the dis-
criminator using a single unsigned byte. For a data-carrying enum, you can pass 
#[repr(C, u8)] to get the same effect.
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On an enum that contains data, the #[repr(C)] attribute causes the enum 
to be represented using a tagged union. That is, it is represented in memory 
by a #[repr(C)] struct with two fields, where the first is the discriminator as 
it would be encoded if none of the variants had fields, and the second is a 
union of the data structures for each variant. For a concrete example, con-
sider the enum and associated representation in Listing 11-4.

#[repr(C)]
enum Foo {
    Bar(i32),
    Baz { a: bool, b: f64 }
}
// is represented as
#[repr(C)]
enum FooTag { Bar, Baz }
#[repr(C)]
struct FooBar(i32);
#[repr(C)]
struct FooBaz{ a: bool, b: f64 }
#[repr(C)]
union FooData {
  bar: FooBar,
  baz: FooBaz,
}
#[repr(C)]
struct Foo {
    tag: FooTag,
    data: FooData
}

Listing 11-4: Rust enums with #[repr(C)] are represented as tagged unions.

T HE NICHE OP T IMIZ AT ION IN F F I

In Chapter 9 we talked about the niche optimization, where the Rust compiler 
uses invalid bit patterns to represent enum variants that hold no data . The fact 
that this optimization is guaranteed leads to an interesting interaction with FFI . 
Specifically, it means that nullable pointers can always be represented in FFI types 
using an Option-wrapped pointer type . For example, a nullable function pointer 
can be represented as Option<extern fn(...)>, and a nullable data pointer can 
be represented as Option<*mut T> . These will transparently do the right thing if an 
all-zero bit pattern value is provided, and will represent it as None in Rust .

Allocations
When you allocate memory, that allocation belongs to its allocator and can 
be freed only by that same allocator. This is the case if you use multiple 
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allocators within Rust and also if you are allocating memory both in Rust 
and with some allocator on the other side of the FFI boundary. You’re 
free to send pointers across the boundary and access that memory to your 
heart’s content, but when it comes to releasing the memory again, it needs 
to be returned to the appropriate allocator.

Most FFI interfaces will have one of two configurations for handling 
allocation: either the caller provides data pointers to chunks of memory 
or the interface exposes dedicated freeing methods to which any allocated 
resources should be returned when they are no longer needed. Listing 11-5 
shows an example of Rust declarations of some signatures from the 
OpenSSL library that use implementation-managed memory.

// One function allocates memory for a new object.
extern fn ECDSA_SIG_new() -> *mut ECDSA_SIG;

// And another accepts a pointer created by new
// and deallocates it when the caller is done with it.
extern fn ECDSA_SIG_free(sig: *mut ECDSA_SIG);

Listing 11-5: An implementation-managed memory interface

 The functions ECDSA_SIG_new and ECDSA_SIG_free form a pair, where the 
caller is expected to call the new function, use the returned pointer for as 
long as it needs (likely by passing it to other functions in turn), and then 
finally pass the pointer to the free function once it’s done with the ref-
erenced resource. Presumably, the implementation allocates memory in 
the new function and deallocates it in the free function. If these functions 
were defined in Rust, the new function would likely use Box::new, and the 
free function would invoke Box::from_raw and then drop the value to run its 
destructor.

Listing 11-6 shows an example of caller-managed memory.

// An example of caller-managed memory.
// The caller provides a pointer to a chunk of memory,
// which the implementation then uses to instantiate its own types.
// No free function is provided, as that happens in the caller.
extern fn BIO_new_mem_buf(buf: *const c_void, len: c_int) -> *mut BIO

Listing 11-6: A caller-managed memory interface

Here, the BIO_new_mem_buf function instead has the caller supply the 
backing memory. The caller can choose to allocate memory on the heap, 
or use whatever other mechanism it deems fit for obtaining the required 
memory, and then passes it to the library. The onus is then on the caller to 
ensure that the memory is later deallocated, but only once it is no longer 
needed by the FFI implementation!

You can use either of these approaches in your FFI APIs or even mix 
and match them if you wish. As a general rule of thumb, allow the caller to 
pass in memory when doing so is feasible, since it gives the caller more free-
dom to manage memory as it deems appropriate. For example, the caller 
may be using a highly specialized allocator on some custom operating 
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system, and may not want to be forced to use the standard allocator your 
implementation would use. If the caller can pass in the memory, it might 
even avoid allocations entirely if it can instead use stack memory or reuse 
already allocated memory. However, keep in mind that the ergonomics of a 
caller-managed interface are often more convoluted, since the caller must 
now do all the work to figure out how much memory to allocate and then 
set that up before it can call into your library.

In some instances, it may even be impossible for the caller to know 
ahead of time how much memory to allocate—for example, if your library’s 
types are opaque (and thus not known to the caller) or can change over 
time, the caller won’t be able to predict the size of the allocation. Similarly, 
if your code has to allocate more memory while it is running, such as if 
you’re building a graph on the fly, the amount of memory needed may vary 
dynamically at runtime. In such cases, you will have to use implementation-
managed memory.

When you’re forced to make a trade-off, go with caller-allocated mem-
ory for anything that is either large or frequent. In those cases the caller is 
likely to care the most about controlling the allocations itself. For anything 
else, it’s probably okay for your code to allocate and then expose destructor 
functions for each relevant type.

Callbacks
You can pass function pointers across the FFI boundary and call the ref-
erenced function through those pointers as long as the function pointer’s 
type has an extern annotation that matches the function’s calling conven-
tion. That is, you can define an extern "C" fn(c_int) -> c_int in Rust and 
then pass a reference to that function to C code as a callback that the C 
code will eventually invoke.

You do need to be careful using callbacks around panics, as having a 
panic unwind past the end of a function that is anything but extern "Rust" 
is undefined behavior. The Rust compiler will currently automatically abort 
if it detects such a panic, but that may not always be the behavior you want. 
Instead, you may want to use std::panic::catch_unwind to detect the panic in 
any function marked extern, and then translate the panic into an error that 
is FFI-compatible.

Safety
When you write Rust FFI bindings, most of the code that actually interfaces 
with the FFI will be unsafe and will mainly revolve around raw pointers. 
However, your goal should be to ultimately present a safe Rust interface on 
top of the FFI. Doing so mainly comes down to reading carefully through 
the invariants of the unsafe interface you are wrapping and then ensuring 
you uphold them all through the Rust type system in the safe interface. The 
three most important elements of safely encapsulating a foreign interface 
are capturing & versus &mut accurately, implementing Send and Sync appro-
priately, and ensuring that pointers cannot be accidentally confused. I’ll go 
over how to enforce each of these next.
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References and Lifetimes

If there’s a chance external code will modify data behind a given pointer, 
make sure that the safe Rust interface has an exclusive reference to the 
relevant data by taking &mut. Otherwise a user of your safe wrapper might 
accidentally read from memory that the external code is simultaneously 
modifying, and all hell will break loose!

You’ll also want to make good use of Rust lifetimes to ensure that all 
pointers live for as long as the FFI requires. For example, imagine an external 
interface that lets you create a Context and then lets you create a Device from 
that Context with the requirement that the Context remain valid for as long as 
the Device lives. In that case, any safe wrapper for the interface should enforce 
that requirement in the type system by having Device hold a lifetime associ-
ated with the borrow of Context that the Device was created from.

Send and Sync

Do not implement Send and Sync for types from an external library unless 
that library explicitly documents that those types are thread-safe! It is the 
safe Rust wrapper’s job to ensure that safe Rust code cannot violate the 
invariants of the external code and thus trigger undefined behavior.

Sometimes, you may even want to introduce dummy types to enforce 
external invariants. For example, say you have an event loop library with the 
interface given in Listing 11-7.

extern fn start_main_loop();
extern fn next_event() -> *mut Event;

Listing 11-7: A library that expects single-threaded use

Now suppose that the documentation for the external library states that 
next_event may be called only by the same thread that called start_main_loop. 
However, here we have no type that we can avoid implementing Send for! 
Instead, we can take a page out of Chapter 3 and introduce additional 
marker state to enforce the invariant, as shown in Listing 11-8.

pub struct EventLoop(std::marker::PhantomData<*const ()>);
pub fn start() -> EventLoop {
    unsafe { ffi::start_main_loop() };
    EventLoop(std::marker::PhantomData)
}
impl EventLoop {
    pub fn next_event(&self) -> Option<Event> {
        let e = unsafe { ffi::next_event() };
        // ...
    }
}

Listing 11-8: Enforcing an FFI invariant by introducing auxiliary types

The empty type EventLoop doesn’t actually connect with anything in the 
underlying external interface but rather enforces the contract that you call 
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next_event only after calling start_main_loop, and only on the same thread. 
You enforce the “same thread” part by making EventLoop neither Send nor 
Sync, by having it hold a phantom raw pointer (which itself is neither Send 
nor Sync).

Using PhantomData<*const ()> to “undo” the Send and Sync auto-traits as 
we do here is a bit ugly and indirect. Rust does have an unstable compiler 
feature that enables negative trait implementations like impl !Send for 
EventLoop {}, but it’s surprisingly difficult to get its implementation right, 
and it likely won’t stabilize for some time.

You may have noticed that nothing prevents the caller from invoking 
start_main_loop multiple times, either from the same thread or from another 
thread. How you’d handle that would depend on the semantics of the 
library in question, so I’ll leave it to you as an exercise.

Pointer Confusion

In many FFI APIs, you don’t necessarily want the caller to know the internal 
representation for each and every chunk of memory you give it pointers to. 
The type might have internal state that the caller shouldn’t fiddle with, or 
the state might be difficult to express in a cross-language-compatible way. 
For these kinds of situations, C-style APIs usually expose void pointers, writ-
ten out as the C type void*, which is equivalent to *mut std::ffi::c_void in 
Rust. A type-erased pointer like this is, effectively, just a pointer, and does 
not convey anything about the thing it points to. For that reason, these 
kinds of pointers are often referred to as opaque.

Opaque pointers effectively serve the role of visibility modifiers for 
types across FFI boundaries—since the method signature does not say 
what’s being pointed to, the caller has no option but to pass around the 
pointer as is and use any available FFI methods to provide visibility into 
the referenced data. Unfortunately, since one *mut c_void is indistinguish-
able from another, there’s nothing stopping a user from taking an opaque 
pointer as is returned from one FFI method and supplying it to a method 
that expects a pointer to a different opaque type.

We can do better than this in Rust. To mitigate this kind of pointer 
type confusion, we can avoid using *mut c_void directly for opaque point-
ers in FFI, even if the actual interface calls for a void*, and instead con-
struct different empty types for each distinct opaque type. For example, 
in Listing 11-9 I use two distinct opaque pointer types that cannot be 
confused.

#[non_exhaustive] #[repr(transparent)] pub struct Foo(c_void);
#[non_exhaustive] #[repr(transparent)] pub struct Bar(c_void);
extern {
    pub fn foo() -> *mut Foo;
    pub fn take_foo(arg: *mut Foo);
    pub fn take_bar(arg: *mut Bar);
}

Listing 11-9: Opaque pointer types that cannot be confused
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Since Foo and Bar are both zero-sized types, they can be used in place of 
() in the extern method signatures. Even better, since they are now distinct 
types, Rust won’t let you use one where the other is required, so it’s now 
impossible to call take_bar with a pointer you got back from foo. Adding the 
#[non_exhaustive] annotation ensures that the Foo and Bar types cannot be 
constructed outside of this crate.

bindgen and Build Scripts
Mapping out the Rust types and externs for a larger external library can be 
quite a chore. Big libraries tend to have a large enough number of type and 
method signatures to match up that writing out all the Rust equivalents is 
time-consuming. They also have enough corner cases and C oddities that 
some patterns are bound to require more careful thought to translate.

Luckily, the Rust community has developed a tool called bindgen that 
significantly simplifies this process as long as you have C header files avail-
able for the library you want to interface with. bindgen essentially encodes all 
the rules and best practices we’ve discussed in this chapter, plus a number 
of others, and wraps them up in a configurable code generator that takes in 
C header files and spits out appropriate Rust equivalents.

bindgen provides a stand-alone binary that generates the Rust code for C 
headers once, which is convenient when you want to check in the bindings. 
This process allows you to hand-tune the generated bindings, should that 
be necessary. If, on the other hand, you want to generate the bindings auto-
matically on every build and just include the C header files in your source 
code, bindgen also ships as a library that you can invoke in a custom build 
script for your package.

N O T E  If you check in the bindings directly, keep in mind that they will be correct only on 
the platform they were generated for. Generating the bindings in a build script will 
generate them specifically for the current target platform, which is less likely to cause 
platform-related layout inconsistencies.

You declare a build script by adding build = "<some-file.rs>" to the 
[package] section of your Cargo.toml. This tells Cargo that, before compiling 
your crate, it should compile <some-file.rs> as a stand-alone Rust program 
and run it; only then should it compile the source code of your crate. The 
build script also gets its own dependencies, which you declare in the [build-
dependencies] section of your Cargo.toml.

N O T E  If you name your build script build.rs, you don’t need to declare it in your Cargo.toml.

Build scripts come in very handy with FFI—they can compile a bundled 
C library from source, dynamically discover and declare additional build 
flags to be passed to the compiler, declare additional files that Cargo 
should check for changes for the purposes of recompilation, and, you 
guessed it, generate additional source files on the fly!
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Though build scripts are very versatile, beware of making them too 
aware of the environment they run in. While you can use a build script 
to detect if the Rust compiler version is a prime or if it’s going to rain in 
Istanbul tomorrow, making your compilation dependent on such conditions 
may make builds fail unexpectedly for other developers, which leads to a 
poor development experience.

The build script can write files to a special directory supplied through 
the OUT_DIR environment variable. The same directory and environment 
variable are also accessible in the Rust source code at compile time so that 
it can pick up files generated by the build script. To generate and use Rust 
types from a C header, you first have your build script use the library ver-
sion of bindgen to read in a .h file and turn it into a file called, say, bindings.rs 
inside OUT_DIR. You then add the following line to any Rust file in your crate 
to include bindings.rs at compilation time:

include!(concat!(env!("OUT_DIR"), "/bindings.rs"));

Since the code in bindings.rs is autogenerated, it’s generally best prac-
tice to place the bindings in their own crate and give the crate the same 
name as the library the bindings are for, with the suffix -sys (for example, 
openssl-sys). If you don’t follow this practice, releasing new versions of your 
library will be much more painful, as it is illegal for two crates that link 
against the same external library through the links key in Cargo.toml to 
coexist in a given build. You would essentially have to upgrade the entire 
ecosystem to the new major version of your library all at once. Separating 
just the bindings into their own crate allows you to issue new major versions 
of the wrapper crate that can be adopted incrementally. The separation 
also allows you to cut a breaking release of the crate with those bindings if 
the Rust bindings change—say, if the header files themselves are upgraded 
or a bindgen upgrade causes the generated Rust code to change slightly—
without also having to cut a breaking release of the crate that safely wraps 
the FFI bindings.

N O T E  Remember that if you include any of the types from the -sys crate in the public inter-
face of your main library crate, changing the dependency on the -sys crate to a new 
major version still constitutes a breaking change for your main library!

If your crate instead produces a library file that you intend others to 
use through FFI, you should also publish a C header file for its interface 
to make it easier to generate native bindings to your library from other 
languages. However, that C header file then needs to be kept up to date as 
your crate changes, which can become cumbersome as your library grows in 
size. Fortunately, the Rust community has also developed a tool to automate 
this task: cbindgen. Like bindgen, cbindgen is a build tool, and it also comes 
as both a binary and a library for use in build scripts. Instead of taking 
in a C header file and producing Rust, it takes Rust in and produces a C 
header file. Since the C header file represents the main computer-readable 
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description of your crate’s FFI, I recommend manually looking it over to 
make sure the autogenerated C code isn’t too unwieldy, though in general 
cbindgen tends to produce fairly reasonable code. If it doesn’t, file a bug!

C++

I’ve mainly focused on C in this chapter as it’s the language most commonly 
used to describe cross-language interfaces for libraries you can link against . 
Nearly every programming language provides some way to interact with C 
libraries, since they are so ubiquitous . While C++ feels closely related to C, 
and many high-profile libraries are written in C++, it’s a very different beast 
when it comes to FFI . Generating types and signatures to match a C header is 
relatively straightforward, but that is not at all the case for C++ . At the time of 
writing, bindgen has decent support for generating bindings to C++, but they 
are often lacking in ergonomics . For example, you generally have to manually 
call constructors, destructors, overloaded operators, and the like . Some C++ 
features like template specialization also aren’t supported at all . If you do have 
to interface with C++, I recommend you give the cxx crate a try .

Summary
In this chapter, we’ve covered how to use the extern keyword to call out of 
Rust into external code, as well as how to use it to make Rust code accessible 
to external code. We’ve also discussed how to align Rust types with types on 
the other side of the FFI boundary, and some of the common pitfalls in try-
ing to get code written in two different languages to mesh well. Finally, we 
talked about the bindgen and cbindgen tools, which make the experience of 
keeping FFI bindings up to date much more pleasant. In the next chapter, 
we’ll look at how to use Rust in more restricted environments, like embed-
ded devices, where the standard library may not be available and where 
even a simple operation like allocating memory may not be possible.





12
R U S T  W I T H O U T  T H E 

S T A N D A R D   L I B R A R Y

Rust is intended to be a language for sys-
tems programming, but it isn’t always clear 

what that really means. At the very least, 
a systems programming language is usually 

expected to allow the programmer to write programs 
that do not rely on the operating system and can run 
directly on the hardware, whether that is a thousand-
core supercomputer or an embedded device with 
a  single-core ARM processor with a clock speed of 
72MHz and 256KiB of memory.

In this chapter, we’ll take a look at how you can use Rust in unorthodox 
environments, such as those without an operating system, or those that 
don’t even have the ability to dynamically allocate memory! Much of our 
discussion will focus on the #![no_std] attribute, but we’ll also investigate 
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Rust’s alloc module, the Rust runtime (yes, Rust does technically have a 
runtime), and some of the tricks you have to play to write up a Rust binary 
for use in such an environment.

Opting Out of the Standard Library
As a language, Rust consists of multiple independent pieces. First there’s 
the compiler, which dictates the grammar of the Rust language and imple-
ments type checking, borrow checking, and the final conversion into 
machine-runnable code. Then there’s the standard library, std, which 
implements all the useful common functionality that most programs 
need—things like file and network access, a notion of time, facilities for 
printing and reading user input, and so on. But std itself is also a compos-
ite, building on top of two other, more fundamental libraries called core 
and alloc. In fact, many of the types and functions in std are just re-exports 
from those two libraries.

The core library sits at the bottom of the standard library pyramid and 
contains any functionality that depends on nothing but the Rust language 
itself and the hardware the resulting program is running on—things like 
sorting algorithms, marker types, fundamental types such as Option and 
Result, low-level operations such as atomic memory access methods, and 
compiler hints. The core library works as if the operating system does 
not exist, so there is no standard input, no filesystem, and no network. 
Similarly, there is no memory allocator, so types like Box, Vec, and HashMap  
are nowhere to be seen.

Above core sits alloc, which holds all the functionality that depends 
on dynamic memory allocation, such as collections, smart pointers, and 
dynamically allocated strings (String). We’ll get back to alloc in the next 
section.

Most of the time, because std re-exports everything in core and 
alloc, developers do not need to know about the differences among the 
three libraries. This means that even though Option technically lives in 
core::option::Option, you can access it through std::option::Option.

However, in an unorthodox environment, such as on an embedded 
device where there is no operating system, the distinction is crucial. While 
it’s fine to use an Iterator or to sort a list of numbers, an embedded device 
may simply have no meaningful way to access a file (as that requires a file-
system) or print to the terminal (as that requires a terminal)—so there’s 
no File or println!. Furthermore, the device may have so little memory that 
dynamic memory allocation is a luxury you can’t afford, and thus anything 
that allocates memory on the fly is a no-go—say goodbye to Box and Vec.

Rather than force developers to carefully avoid those basic constructs 
in such environments, Rust provides a way to opt out of anything but the 
core functionality of the language: the #![no_std] attribute. This is a crate-
level attribute (#!) that switches the prelude (see the box on page 213) for 
the crate from std::prelude to core::prelude so that you don’t accidentally 
depend on anything outside of core that might not work in your target 
environment.
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However, that is all the #![no_std] attribute does—it does not prevent 
you from bringing in the standard library explicitly with extern std. This 
may be surprising, as it means a crate marked #![no_std] may in fact not be 
compatible with a target environment that does not support std, but this 
design decision was intentional: it allows you to mark your crate as being  
no_std-compatible but to still use features from the standard library when 
certain features are enabled. For example, many crates have a feature named 
std that, when enabled, gives access to more sophisticated APIs and integra-
tions with types that live in std. This allows crate authors to both supply the 
core implementation for constrained use cases and add bells and whistles 
for consumers on more standard platforms.

N O T E  Since features should be additive, prefer an std-enabling feature to an std-disabling 
one. Otherwise, if any crate in a consumer’s dependency graph enables the no-std 
feature, all consumers will be given access only to the bare-bones API without std sup-
port, which may then mean that APIs they depend on aren’t available, causing them 
to no longer compile.

T HE PR ELUDE

Have you ever wondered why there are some types and traits—like Box, Iterator, 
Option, and Clone—that are available in every Rust file without you needing to 
use them? Or why you don’t need to use any of the macros in the standard library 
(like vec![])? The reason is that every Rust module automatically imports the Rust 
standard prelude with an implicit use std::prelude::rust_2021::* (or similar 
for other editions), which brings all the exports from the crate’s chosen edition’s 
prelude into scope . The prelude modules themselves aren’t special beyond this 
 auto-inclusion—they are merely collections of pub use statements for key types, 
traits, and macros that the Rust developers expect to be commonly used .
 

Dynamic Memory Allocation
As we discussed in Chapter 1, a machine has many different regions of 
memory, and each one serves a distinct purpose. There’s static memory for 
your program code and static variables, there’s the stack for function-local 
variables and function arguments, and there’s the heap for, well, every-
thing else. The heap supports allocating variably sized regions of memory 
at runtime, and those allocations stick around for however long you want 
them to. This makes heap memory extremely versatile, and as a result, you 
find it used everywhere. Vec, String, Arc and Rc, and the collection types are 
all implemented in heap memory, which allows them to grow and shrink 
over time and to be returned from functions without the borrow checker 
complaining.
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Behind the scenes, the heap is really just a huge chunk of contiguous 
memory that is managed by an allocator. It’s the allocator that provides the 
illusion of distinct allocations in the heap, ensuring that those allocations do 
not overlap and that regions of memory that are no longer in use are reused. 
By default Rust uses the system allocator, which is generally the one dictated 
by the standard C library. This works well for most use cases, but if necessary, 
you can override which allocator Rust will use through the GlobalAlloc trait 
combined with the #[global_allocator] attribute, which requires an imple-
mentation of an alloc method for allocating a new segment of memory and 
dealloc for returning a past allocation to the allocator to reuse.

In environments without an operating system, the standard C library 
is also generally not available, and so neither is the standard system alloca-
tor. For that reason, #![no_std] also excludes all types that rely on dynamic 
memory allocation. But since it’s entirely possible to implement a memory 
allocator without access to a full-blown operating system, Rust allows you 
to opt back into just the part of the Rust standard library that requires an 
allocator without opting into all of std through the alloc crate. The alloc 
crate comes with the standard Rust toolchain (just like core and std) and 
contains most of your favorite heap-allocation types, like Box, Arc, String, 
Vec, and BTreeMap. HashMap is not among them, since it relies on random num-
ber generation for its key hashing, which is an operating system facility. To 
use types from alloc in a no_std context, all you have to do is replace any 
imports of those types that previously had use std:: with use alloc:: instead. 
Do keep in mind, though, that depending on alloc means your #![no_std] 
crate will no longer be usable by any program that disallows dynamic mem-
ory allocation, either because it doesn’t have an allocator or because it has 
too little memory to permit dynamic memory allocation in the first place.

N O T E  Some programming domains, like the Linux kernel, may allow dynamic memory 
allocation only if out-of-memory errors are handled gracefully (that is, without pan-
icking). For such use cases, you’ll want to provide try_ versions of any methods you 
expose that might allocate. The try_ methods should use fallible methods of any inner 
types (like the currently unstable Box::try_new or Vec::try_reserve) rather than ones 
that just panic (like Box::new or Vec::reserve) and propagate those errors out to the 
caller, who can then handle them appropriately.

It might strike you as odd that it’s possible to write nontrivial crates that 
use only core. After all, they can’t use collections, the String type, the net-
work, or the filesystem, and they don’t even have a notion of time! The trick 
to core-only crates is to utilize the stack and static allocations. For example, 
for a heapless vector, you allocate enough memory up front—either in static 
memory or in a function’s stack frame—for the largest number of elements 
you expect the vector to be able to hold, and then augment it with a usize 
that tracks how many elements it currently holds. To push to the vector, you 
write to the next element in the (statically sized) array and increment a vari-
able that tracks the number of elements. If the vector’s length ever reaches 
the static size, the next push fails. Listing 12-1 gives an example of such a 
heapless vector type implemented using const generics.
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struct ArrayVec<T, const N: usize> {
    values: [Option<T>; N],
    len: usize,
}
impl<T, const N: usize> ArrayVec<T, N> {
    fn try_push(&mut self, t: T) -> Result<(), T> {
        if self.len == N {
            return Err(t);
        }
        self.values[self.len] = Some(t);
        self.len += 1;
        return Ok(());
    }
}

Listing 12-1: A heapless vector type

We make ArrayVec generic over both the type of its elements, T, and the 
maximum number of elements, N, and then represent the vector as an array 
of N optional Ts. This structure always stores N Option<T>, so it has a size known 
at compile time and can be stored on the stack, but it can still act like a vec-
tor by using runtime information to inform how we access the array.

N O T E  We could have implemented ArrayVec using [MaybeUninit<T>; N] to avoid the over-
head of the Option, but that would require using unsafe code, which isn’t warranted 
for this example.

The Rust Runtime
You may have heard the claim that Rust doesn’t have a runtime. While 
that’s true at a high level—it doesn’t have a garbage collector, an inter-
preter, or a built-in user-level scheduler—it’s not really true in the strictest 
sense. Specifically, Rust does have some special code that runs before your 
main function and in response to certain special conditions in your code, 
which really is a form of bare-bones runtime.

The Panic Handler
The first bit of such special code is Rust’s panic handler. When Rust code 
panics by invoking panic! or panic_any, the panic handler dictates what 
happens next. When the Rust runtime is available—as is the case on most 
targets that supply std—the panic handler first invokes the panic hook set 
via std::panic::set_hook, which prints a message and optionally a backtrace 
to standard error by default. It then either unwinds the current thread’s 
stack or aborts the process, depending on the panic setting chosen for cur-
rent compilation (either through Cargo configuration or arguments passed 
directly to rustc).

However, not all targets provide a panic handler. For example, most 
embedded targets do not, as there isn’t necessarily a single implementation 
that makes sense across all the uses for such a target. For targets that don’t 
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supply a panic handler, Rust still needs to know what to do when a panic 
occurs. To that end, we can use the #[panic_handler] attribute to decorate a 
single function in the program with the signature fn(&PanicInfo) -> !. That 
function is called whenever the program invokes a panic, and it is passed 
information about the panic in the form of a core::panic::PanicInfo. What 
the function does with that information is entirely unspecified, but it can 
never return (as indicated by the ! return type). This is important, since the 
Rust compiler assumes that no code that follows a panic is run.

There are many valid ways for a panic handler to avoid returning. The 
standard panic handler unwinds the thread’s stack and then terminates the 
thread, but a panic handler can also halt the thread using loop {}, abort the 
program, or do anything else that makes sense for the target platform, even 
as far as resetting the device.

Program Initialization
Contrary to popular belief, the main function is not the first thing that runs 
in a Rust program. Instead, the main symbol in a Rust binary actually points 
to a function in the standard library called lang_start. That function per-
forms the (fairly minimal) setup for the Rust runtime, including stashing 
the program’s command-line arguments in a place where std::env::args can 
get to them, setting the name of the main thread, handling panics in the 
main function, flushing standard output on program exit, and setting up sig-
nal handlers. The lang_start function in turn calls the main function defined 
in your crate, which then doesn’t need to think about how, for example, 
Windows and Linux differ in how command-line arguments are passed in.

This arrangement works well on platforms where all of that setup is sen-
sible and supported, but it presents a problem on embedded platforms where 
main memory may not even be accessible when the program starts. On such 
platforms, you’ll generally want to opt out of the Rust initialization code 
entirely using the #![no_main] crate-level attribute. This attribute completely 
omits lang_start, meaning you as the developer must figure out how the pro-
gram should be started, such as by declaring a function with #[export_name = 
"main"] that matches the expected launch sequence for the target platform.

N O T E  On platforms that truly run no code before they jump to the defined start symbol, 
like most embedded devices, the initial values of static variables may not even match 
what’s specified in the source code. In such cases, your initialization function will 
need to explicitly initialize the various static memory segments with the initial data 
values specified in your program binary.

The Out-of-Memory Handler
If you write a program that wishes to use alloc but is built for a platform 
that does not supply an allocator, you must dictate which allocator to use 
using the #[global_allocator] attribute mentioned earlier in the chapter. 
But you also have to specify what happens if that global allocator fails 
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to allocate memory. Specifically, you need to define an out-of-memory handler 
to say what should happen if an infallible operation like Vec::push needs to 
allocate more memory, but the allocator cannot supply it.

The default behavior of the out-of-memory handler on std-enabled 
platforms is to print an error message to standard error and then abort the 
process. However, on a platform that, for example, doesn’t have standard 
error, that obviously won’t work. At the time of writing, on such platforms 
your program must explicitly define an out-of-memory handler using the 
unstable attribute #[lang = "oom"]. Keep in mind that the handler should 
almost certainly prevent future execution, as otherwise the code that tried 
to allocate will continue executing without knowing that it did not receive 
the memory it asked for!

N O T E  By the time you read this, the out-of-memory handler may already have been stabilized 
under a permanent name (#[alloc_error_handler], most likely). Work is also under-
way to give the default std out-of-memory handler the same kind of “hook” function-
ality as Rust’s panic handler, so that code can change the out-of-memory behavior on 
the fly through a method like set_alloc_error_hook.

Low-Level Memory Accesses
In Chapter 10, we discussed the fact that the compiler is given a fair amount 
of leeway in how it turns your program statements into machine instruc-
tions, and that the CPU is allowed some wiggle room to execute instruc-
tions out of order. Normally, the shortcuts and optimizations that the 
compiler and CPU can take advantage of are invisible to the semantics of 
the program—you can’t generally tell whether, say, two reads have been 
reordered relative to each other or whether two reads from the same mem-
ory location actually result in two CPU load instructions. This is by design. 
The language and hardware designers carefully specified what semantics 
programmers commonly expect from their code when it runs so that your 
code generally does what you expect it to.

However, no_std programming sometimes takes you beyond the usual 
border of “invisible optimizations.” In particular, you’ll often communicate 
with hardware devices through memory mapping, where the internal state 
of the device is made available in carefully chosen regions in memory. For 
example, while your computer starts up, the memory address range 0xA0000–
0xBFFFF maps to a crude graphics rendering pipeline; writes to individual 
bytes in that range will change particular pixels (or blocks, depending on 
the mode) on the screen.

When you’re interacting with device-mapped memory, the device 
may implement custom behavior for each memory access to that region of 
memory, so the assumptions your CPU and compiler make about regular 
memory loads and stores may no longer hold. For instance, it is common 
for hardware devices to have memory-mapped registers that are modified 
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when they’re read, meaning the reads have side effects. In such cases, the 
compiler can’t safely elide a memory store operation if you read the same 
memory address twice in a row!

A similar issue arises when program execution is suddenly diverted in 
ways that aren’t represented in the code and thus that the compiler can-
not expect. Execution might be diverted if there is no underlying operat-
ing system to handle processor exceptions or interrupts, or if a process 
receives a signal that interrupts execution. In those cases, the execution 
of the active segment of code is stopped, and the CPU starts executing 
instructions in the event handler for whatever event triggered the diversion 
instead. Normally, since the compiler can anticipate all possible executions, 
it arranges its optimizations so that executions cannot observe when opera-
tions have been performed out of order or optimized away. However, since 
the compiler can’t predict these exceptional jumps, it also cannot plan for 
them to be oblivious to its optimizations, so these event handlers might 
actually observe instructions that have run in a different order than those 
in the original program code.

To deal with these exceptional situations, Rust provides volatile memory 
operations that cannot be elided or reordered with respect to other vola-
tile operations. These operations take the form of std::ptr::read_volatile 
and std::ptr::write_volatile. Volatile operations are exactly the right fit 
for accessing memory-mapped hardware resources: they map directly to 
memory access operations with no compiler trickery, and the guarantee 
that volatile operations aren’t reordered relative to one another ensures 
that hardware operations with possible side effects don’t happen out of 
order even when they would normally look interchangeable (such as a load 
of one address and a store to a different address). The no-reordering guar-
antee also helps the exceptional execution situation, as long as any code 
that touches memory accessed in an exceptional context uses only volatile 
memory operations.

N O T E  There is also a std::sync::atomic::compiler_fence function that prevents the com-
piler from reordering non-volatile memory accesses. You’ll very rarely need a compiler 
fence, but its documentation is an interesting read.

INCLUDING A SSEMBLY CODE

These days, you rarely need to drop down to writing assembly code to accom-
plish any given task . But for low-level hardware programming where you need 
to initialize CPUs at boot or issue strange instructions to manipulate memory 
mappings, assembly code is still sometimes required . At the time of writing, 
there is an RFC and a mostly complete implementation of inline assembly syntax 
on nightly Rust, but nothing has been stabilized yet, so I won’t discuss the syntax 
in this book .
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It’s still possible to write assembly on stable Rust—you just need to get a lit-
tle creative . Specifically, remember build scripts from Chapter 11? Well, Cargo 
build scripts can emit certain special directives to standard output to augment 
Cargo’s standard build process, including cargo:rustc-link-lib=static=xyz 
to link the static library file libxyz.a into the final binary, and cargo:rustc-link-
search:/some/path to add /some/path to the search path for link objects . 
Using those, we can add a build.rs to the project that compiles a standalone 
assembly file (.s) to an object file (.o) using the target platform’s compiler and 
then repackages it into a static archive (.a) using the appropriate archiving 
tool (usually ar) . The project then emits those two Cargo directives, pointing at 
where it placed the static archive—probably in OUT_DIR—and we’re off to the 
races! If the target platform doesn’t change, you can even include the precom-
piled .a when publishing your crate so that consumers don’t need to rebuild it .

Misuse-Resistant Hardware Abstraction
Rust’s type system excels at encapsulating unsafe, hairy, and otherwise 
unpleasant code behind safe, ergonomic interfaces. Nowhere is that 
more important than in the infamously complex world of low-level sys-
tems programming, littered with magic hardware-defined values pulled 
from obscure manuals and mysterious undocumented assembly instruc-
tion incantations to get devices into just the right state. And all that in a 
space where a runtime error might crash more than just a user program!

In no_std programs, it is immensely important to use the type system to 
make illegal states impossible to represent, as we discussed in Chapter 3. If 
certain combinations of register values cannot occur at the same time, then 
create a single type whose type parameters indicate the current state of the 
relevant registers, and implement only legal transitions on it, like we did for 
the rocket example in Listing 3-2.

N O T E  Make sure to also review the advice from Chapter 3 on API design—all of that 
applies in the context of no_std programs as well!

For example, consider a pair of registers where at most one register 
should be “on” at any given point in time. Listing 12-2 shows how you can 
represent that in a (single-threaded) program in a way makes it impossible 
to write code that violates that invariant.

// raw register address -- private submodule
mod registers;
pub struct On;
pub struct Off;
pub struct Pair<R1, R2>(PhantomData<(R1, R2)>);
impl Pair<Off, Off> {
    pub fn get() -> Option<Self> {
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        static mut PAIR_TAKEN: bool = false;
        if unsafe { PAIR_TAKEN } {
            None
        } else {
            // Ensure initial state is correct.
            registers::off("r1");
            registers::off("r2");
            unsafe { PAIR_TAKEN = true };
            Some(Pair(PhantomData))
        }
    }

    pub fn first_on(self) -> Pair<On, Off> {
        registers::set_on("r1");
        Pair(PhantomData)
    }
    // .. and inverse for -> Pair<Off, On>
}
impl Pair<On, Off> {
    pub fn off(self) -> Pair<Off, Off> {
        registers::set_off("r1");
        Pair(PhantomData)
    }
}
// .. and inverse for Pair<Off, On>

Listing 12-2: Statically ensuring correct operation

There are a few noteworthy patterns in this code. The first is that we 
ensure only a single instance of Pair ever exists by checking a private static 
Boolean in its only constructor and making all methods consume self. We 
then ensure that the initial state is valid and that only valid state transitions 
are possible to express, and therefore the invariant must hold globally.

The second noteworthy pattern in Listing 12-2 is that we use PhantomData 
to take advantage of zero-sized types and represent runtime information 
statically. That is, at any given point in the code the types tell us what the 
runtime state must be, and therefore we don’t need to track or check any 
state related to the registers at runtime. There’s no need to check that r2 
isn’t already on when we’re asked to enable r1, since the types prevent writ-
ing a program in which that is the case.

Cross-Compilation
Usually, you’ll write no_std programs on a computer with a full-fledged 
operating system running and all the niceties of modern hardware, but ulti-
mately run it on a dinky hardware device with 93/4 bits of RAM and a sock 
for a CPU. That calls for cross-compilation—you need to compile the code in 
your development environment, but compile it for the sock. That’s not the 
only context in which cross-compilation is important, though. For exam-
ple, it’s increasingly common to have one build pipeline produce binary 
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artifacts for all consumer platforms rather than trying to have a build pipe-
line for every platform your consumers may be using, and that means using 
cross-compilation.

N O T E  If you’re actually compiling for something sock-like with limited memory, or even 
something as fancy as a potato, you may want to set the opt-level Cargo configura-
tion to "s" to optimize for smaller binary sizes.

Cross-compiling involves two platforms: the host platform and the target 
platform. The host platform is the one doing the compiling, and the target 
platform is the one that will eventually run the output of the compilation. 
We specify platforms as target triples, which take the form machine- vendor-os. 
The machine part dictates the machine architecture the code will run on, 
such as x86_64, armv7, or wasm32, and tells the compiler what instruction set to 
use for the emitted machine code. The vendor part generally takes the value 
of pc on Windows, apple on macOS and iOS, and unknown everywhere else, 
and doesn’t affect compilation in any meaningful way; it’s mostly irrelevant 
and can even be left out. The os part tells the compiler what format to use 
for the final binary artifacts, so a value of linux dictates Linux .so files, win-
dows dictates Windows .dll files, and so on.

N O T E  By default, Cargo assumes that the target platform is the same as the host platform, 
which is why you generally never have to tell Cargo to, say, compile for Linux when 
you’re already on Linux. Sometimes you may want to use --target even if the CPU 
and OS of the target are the same, though, such as to target the musl implementation 
of libc.

To tell Cargo to cross-compile, you simply pass it the --target <target 
 triple> argument with your triple of choice. Cargo will then take care of 
forwarding that information to the Rust compiler so that it generates binary 
artifacts that will work on the given target platform. Cargo will also take care 
to use the appropriate version of the standard library for that platform—after 
all, the standard library contains a lot of conditional compilation directives 
(using #[cfg(...)]) so that the right system calls get invoked and the right 
architecture-specific implementations are used, so we can’t use the standard 
library for the host platform on the target.

The target platform also dictates what components of the standard 
library are  available. For example, while x86_64-unknown-linux-gnu includes 
the full std library, something like thumbv7m-none-eabi does no, and doesn’t 
even define an allocator, so if you use alloc without defining one explicitly, 
you’ll get a build error. This comes in handy for testing that code you write 
actually doesn’t require std (recall that even with #![no_std] you can still have 
use std::, since no_std opts out of only the std prelude). If you have your con-
tinuous integration pipeline build your crate with --target thumbv7m-none-eabi, 
any attempt to access components from anything but core will trigger a build 
failure. Crucially, this will also check that your crate doesn’t accidentally 
bring in dependencies that themselves use items from std (or alloc).
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PL AT FOR M SUPPOR T

The standard Rust installer, Rustup, doesn’t install the standard library for all the 
target triples that Rust supports by default . That would be a waste of space and 
bandwidth . Instead, you have to use the command rustup target add to install 
the appropriate standard library versions for additional targets . If no version of 
the standard library exists for your target platform, you’ll have to compile it from 
source yourself by adding the rust-src Rustup component and using Cargo’s 
(currently unstable) build-std feature to also build std (and/or core and alloc) 
when building any crate .

If your target is not supported by the Rust compiler—that is, if rustc doesn’t 
even know about your target triple—you’ll have to go one step further and teach 
rustc about the properties of the triple using a custom target specification . How 
you do that is both currently unstable and beyond the scope of this book, but a 
search for “custom target specification json” is a good place to start .

Summary
In this chapter, we’ve covered what lies beneath the standard library—or, 
more precisely, beneath std. We’ve gone over what you get with core, how 
you can extend your non-std reach with alloc, and what the (tiny) Rust run-
time adds to your programs to make fn main work. We’ve also taken a look 
at how you can interact with device-mapped memory and otherwise handle 
the unorthodox execution patterns that can happen at the very lowest level 
of hardware programming, and how to safely encapsulate at least some of 
the oddities of hardware in the Rust type system. Next, we’ll move from the 
very small to the very large by discussing how to navigate, understand, and 
maybe even contribute to the larger Rust ecosystem.
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T H E  R U S T  E C O S Y S T E M

Programming rarely happens in a vacuum 
these days—nearly every Rust crate you 

build is likely to take dependencies on some 
code that wasn’t written by you. Whether this 

trend is good, bad, or a little of both is a subject of 
heavy debate, but either way, it’s a reality of today’s 
developer experience. 

In this brave new interdependent world, it’s more important than ever 
to have a solid grasp of what libraries and tools are available and to stay up 
to date on the latest and greatest of what the Rust community has to offer. 
This chapter is dedicated to how you can leverage, track, understand, and 
contribute back to the Rust ecosystem. Since this is the final chapter, in the 
closing section I’ll also provide some suggestions of additional resources 
you can explore to continue developing your Rust skills.
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What’s Out There?
Despite its relative youth, Rust already has an ecosystem large enough that 
it’s hard to keep track of everything that’s available. If you know what you 
want, you may be able to search your way to a set of appropriate crates and 
then use download statistics and superficial vibe-checks on each crate’s 
repository to determine which may make for reasonable dependencies. 
However, there’s also a plethora of tools, crates, and general language fea-
tures that you might not necessarily know to look for that could potentially 
save you countless hours and difficult design decisions.

In this section, I’ll go through some of the tools, libraries, and Rust fea-
tures I have found helpful over the years in the hopes that they may come 
in useful for you at some point too!

Tools
First off, here are some Rust tools I find myself using regularly that you 
should add to your toolbelt:

cargo-deny

Provides a way to lint your dependency graph. At the time of writing, 
you can use cargo-deny to allow only certain licenses, deny-list crates or 
specific crate versions, detect dependencies with known vulnerabilities 
or that use Git sources, and detect crates that appear multiple times 
with different versions in the dependency graph. By the time you’re 
reading this, there may be even more handy lints in place.

cargo-expand

Expands macros in a given crate and lets you inspect the output, which 
makes it much easier to spot mistakes deep down in macro transcrib-
ers or procedural macros. cargo-expand is an invaluable tool when you’re 
writing your own macros.

cargo-hack

Helps you check that your crate works with any combination of features 
enabled. The tool presents an interface similar to that of Cargo itself 
(like cargo check, build, and test) but gives you the ability to run a given 
command with all possible combinations (the powerset) of the crate’s 
features.

cargo-llvm-lines

Analyzes the mapping from Rust code to the intermediate representa-
tion (IR) that’s passed to the part of the Rust compiler that actually 
generates machine code (LLVM), and tells you which bits of Rust code 
produce the largest IR. This is useful because a larger IR means longer 
compile times, so identifying what Rust code generates a bigger IR (due 
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to, for example, monomorphization) can highlight opportunities for 
reducing compile times.

cargo-outdated

Checks whether any of your dependencies, either direct or transitive, 
have newer versions available. Crucially, unlike cargo update, it even 
tells you about new major versions, so it’s an essential tool for check-
ing if you’re missing out on newer versions due to an outdated major 
version specifier. Just keep in mind that bumping the major version of 
a dependency may be a breaking change for your crate if you expose 
that dependency’s types in your interface!

cargo-udeps

Identifies any dependencies listed in your Cargo.toml that are never actu-
ally used. Maybe you used them in the past but they’ve since become 
redundant, or maybe they should be moved to dev-dependencies; what-
ever the case, this tool helps you trim down bloat in your dependency 
closure.

While they’re not specifically tools for developing Rust, I highly recom-
mend fd and ripgrep too—they’re excellent improvements over their prede-
cessors find and grep and also happen to be written in Rust themselves. I use 
both every day.

Libraries
Next up are some useful but lesser-known crates that I reach for regularly, 
and that I suspect I will continue to depend on for a long time:

bytes

Provides an efficient mechanism for passing around subslices of a single 
piece of contiguous memory without having to copy or deal with life-
times. This is great in low-level networking code where you may need 
multiple views into a single chunk of bytes, and copying is a no-no.

criterion

A statistics-driven benchmarking library that uses math to eliminate 
noise from benchmark measurements and reliably detect changes in 
performance over time. You should almost certainly be using it if you’re 
including micro-benchmarks in your crate.

cxx

Provides a safe and ergonomic mechanism for calling C++ code from 
Rust and Rust code from C++. If you’re willing to invest some time into 
declaring your interfaces more thoroughly in advance in exchange for 
much nicer cross-language compatibility, this library is well worth your 
attention.
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flume

Implements a multi-producer, multi-consumer channel that is faster, 
more flexible, and simpler than the one included with the Rust stan-
dard library. It also supports both asynchronous and synchronous oper-
ation and so is a great bridge between those two worlds.

hdrhistogram

A Rust port of the High Dynamic Range (HDR) histogram data struc-
ture, which provides a compact representation of histograms across a 
wide range of values. Anywhere you currently track averages or min/
max values, you should most likely be using an HDR histogram instead; 
it can give you much better insight into the distribution of your metrics.

heapless

Supplies data structures that do not use the heap. Instead, heapless’s 
data structures are all backed by static memory, which makes them 
perfect for embedded contexts or other situations in which allocation is 
undesirable.

itertools

Extends the Iterator trait from the standard library with lots of new 
convenient methods for deduplication, grouping, and computing pow-
ersets. These extension methods can significantly reduce boilerplate in 
code, such as where you manually implement some common algorithm 
over a sequence of values, like finding the min and max at the same 
time (Itertools::minmax), or where you use a common pattern like check-
ing that an iterator has exactly one item (Itertools::exactly_one).

nix

Provides idiomatic bindings to system calls on Unix-like systems, 
which allows for a much better experience than trying to cobble 
together the C-compatible FFI types yourself when working with 
something like libc directly.

pin-project

Provides macros that enforce the pinning safety invariants for anno-
tated types, which in turn provide a safe pinning interface to those 
types. This allows you to avoid most of the hassle of getting Pin and 
Unpin right for your own types. There’s also pin-project-lite, which 
avoids the (currently) somewhat heavy dependency on the procedural 
macro machinery at the cost of slightly worse ergonomics.

ring

Takes the good parts from the cryptography library BoringSSL, 
written in C, and brings them to Rust through a fast, simple, and 
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hard-to-misuse interface. It’s a great starting point if you need to use 
cryptography in your crate. You’ve already most likely come across this 
in the rustls library, which uses ring to provide a modern, secure-by-
default TLS stack.

slab

Implements an efficient data structure to use in place of HashMap<Token, T>, 
where Token is an opaque type used only to differentiate between entries in 
the map. This kind of pattern comes up a lot when managing resources, 
where the set of current resources must be managed centrally but indi-
vidual resources must also be accessible somehow.

static_assertions

Provides static assertions—that is, assertions that are evaluated at, and 
thus may fail at, compile time. You can use it to assert things like that 
a type implements a given trait (like Send) or is of a given size. I highly 
recommend adding these kinds of assertions for code where those 
guarantees are likely to be important.

structopt

Wraps the well-known argument parsing library clap and provides a way 
to describe your application’s command line interface entirely using the 
Rust type system (plus macro annotations). When you parse your appli-
cation’s arguments, you get a value of the type you defined, and you 
thus get all the type checking benefits, like exhaustive matching and 
IDE auto-complete.

thiserror

Makes writing custom enumerated error types, like the ones we discussed 
in Chapter 4, a joy. It takes care of implementing the recommended traits 
and following the established conventions and leaves you to define just 
the critical bits that are unique to your application.

tower

Effectively takes the function signature async fn(Request) -> Response and 
implements an entire ecosystem on top of it. At its core is the Service 
trait, which represents a type that can turn a request into a response 
(something I suspect may make its way into the standard library one 
day). This is a great abstraction to build anything that looks like a ser-
vice on top of.

tracing

Provides all the plumbing needed to efficiently trace the execution of 
your applications. Crucially, it is agnostic to the types of events you’re 
tracing and what you want to do with those events. This library can be 
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used for logging, metrics collection, debugging, profiling, and obvi-
ously tracing, all with the same machinery and interfaces.

Rust Tooling
The Rust toolchain has a few features up its sleeve that you may not know 
to look for. These are usually for very specific use cases, but if they match 
yours, they can be lifesavers!

Rustup

Rustup, the Rust toolchain installer, does its job so efficiently that it tends 
to fade into the background and get forgotten about. You’ll occasionally 
use it to update your toolchain, set a directory override, or install a com-
ponent, but that’s about it. However, Rustup supports one very handy trick 
that it’s worthwhile to know about: the toolchain override shorthand. You 
can pass +toolchain as the first argument to any Rustup-managed binary, 
and the binary will work as if you’d set an override for the given toolchain, 
run the command, and then reset the override back to what it was previ-
ously. So, cargo +nightly miri will run Miri using the nightly toolchain, and 
cargo +1.53.0 check will check if the code compiles with Rust 1.53.0. The lat-
ter comes in particularly handy for checking that you haven’t broken your 
minimum supported Rust version contract.

Rustup also has a neat subcommand, doc, that opens a local copy of the 
Rust standard library documentation for the current version of the Rust 
compiler in your browser. This is invaluable if you’re developing on the go 
without an internet connection!

Cargo

Cargo also has some handy features that aren’t always easy to discover. 
The first of these is cargo tree, a Cargo subcommand built right into Cargo 
itself for inspecting a crate’s dependency graph. This command’s primary 
purpose is to print the dependency graph as a tree. This can be useful on 
its own, but where cargo tree really shines is through the --invert option: 
it takes a crate identifier and produces an inverted tree showing all the 
dependency paths from the current crate that bring in that dependency. 
So, for example, cargo tree -i rand will print all of the ways in which the 
current crate depends on any version of rand, including through transitive 
dependencies. This is invaluable if you want to eliminate a dependency, or 
a particular version of a dependency, and wonder why it still keeps being 
pulled in. You can also pass the -e features option to include information 
about why each Cargo feature of the crate in question is enabled.

Speaking of Cargo subcommands, it’s really easy to write your own, 
whether for sharing with other people or just for your own local develop-
ment. When Cargo is invoked with a subcommand it doesn’t recognize, it 
checks whether a program by the name cargo-$subcommand exists. If it does, 
Cargo invokes that program and passes it any arguments that were passed 
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on the command line—so, cargo foo bar will invoke cargo-foo with the argu-
ment bar. Cargo will even integrate this command with cargo help by trans-
lating cargo help foo into a call to cargo-foo --help.

As you work on more Rust projects, you may notice that Cargo (and 
Rust more generally) isn’t exactly forgiving when it comes to disk space. 
Each project gets its own target directory for its compilation artifacts, and 
over time you end up accumulating several identical copies of compiled 
artifacts for common dependencies. Keeping artifacts for each project sepa-
rate is a sensible choice, as they aren’t necessarily compatible across projects 
(say, if one project uses different compiler flags than another). But in most 
developer environments, sharing build artifacts is entirely reasonable and 
can save a fair amount of compilation time when switching between proj-
ects. Luckily, configuring Cargo to share build artifacts is simple: just set 
[build] target in your ~/.cargo/config.toml file to the directory you want those 
shared artifacts to go in, and Cargo will take care of the rest. No more tar-
get directories in sight! Just make sure you clean out that directory every 
now and again too, and be aware that cargo clean will now clean all of your 
projects’ build artifacts.

N O T E  Using a shared build directory can cause problems for projects that assume that com-
piler artifacts will always be under the target/ subdirectory, so watch out for that. 
Also note that if a project does use different compiler flags, you’ll end up recompiling 
affected dependencies every time you move into or out of that project. In such cases, 
you’re best off overriding the target directory in that project’s Cargo configuration to a 
distinct location.

Finally, if you ever feel like Cargo is taking a suspiciously long time to 
build your crate, you can reach for the currently unstable Cargo -Ztimings 
flag. Running Cargo with that flag outputs information about how long it 
took to process each crate, how long build scripts took to run, what crates 
had to wait for what other crates to finish compiling, and tons of other 
useful metrics. This might highlight a particularly slow dependency chain 
that you can then work to eliminate, or reveal a build script that compiles 
a native dependency from scratch that you can make use system libraries 
instead. If you want to dive even deeper, there’s also rustc -Ztime-passes, 
which emits information about where time is spent inside of the compiler 
for each crate—though that information is likely only useful if you’re look-
ing to contribute to the compiler itself.

rustc

The Rust compiler also has some lesser-known features that can prove use-
ful to enterprising developers. The first is the currently unstable -Zprint-
type-sizes argument, which prints the sizes of all the types in the current 
crate. This produces a lot of information for all but the tiniest crates but 
is immensely valuable when trying to determine the source of unexpected 
time spent in calls to memcpy or to find ways to reduce memory use when allo-
cating lots of objects of a particular type. The -Zprint-type-sizes argument 
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also displays the computed alignment and layout for each type, which may 
point you to places where turning, say, a usize into a u32 could have a sig-
nificant impact on a type’s in-memory representation. After you debug a 
particular type’s size, alignment, and layout, I recommend adding static 
assertions to make sure that they don’t regress over time. You may also be 
interested in the variant_size_differences lint, which issues a warning if a 
crate contains enum types whose variants significantly differ in size.

N O T E  To call rustc with particular flags, you have a few options: you can either set them in 
the RUSTFLAGS environment variable or [build] rustflags in your .cargo/config.toml 
to have them apply to every invocation of rustc from Cargo, or you can use cargo 
rustc, which will pass any arguments you provide only to the rustc invocation for the 
current crate.

If your profiling samples look weird, with stack frames reordered or 
entirely missing, you could also try -Cforce-frame-pointers = yes. Frame point-
ers provide a more reliable way to unwind the stack—which is done a lot 
during profiling—at the cost of an extra register being used for function 
calls. Even though stack unwinding should work fine with just regular debug 
symbols enabled (remember to set debug = true when using the release pro-
file), that’s not always the case, and frame pointers may take care of any 
issues you do encounter.

The Standard Library
The Rust standard library is generally considered to be small compared 
to those of other programming languages, but what it lacks in breadth, it 
makes up for in depth; you won’t find a web server implementation or an 
X.509 certificate parser in Rust’s standard library, but you will find more 
than 40 different methods on the Option type alongside over 20 trait imple-
mentations. For the types it does include, Rust does its best to make avail-
able any relevant functionality that meaningfully improves ergonomics, so 
you avoid all that verbose boilerplate that can so easily arise otherwise. In 
this section, I’ll present some types, macros, functions, and methods from 
the standard library that you may not have come across before, but that can 
often simplify or improve (or both) your code.

Macros and Functions

Let’s start off with a few free-standing utilities. First up is the write! macro, 
which lets you use format strings to write into a file, a network socket, or any-
thing else that implements Write. You may already be familiar with it—but 
one little-known feature of write! is that it works with both std::io::Write and 
std::fmt::Write, which means you can use it to write formatted text directly into 
a String. That is, you can write use std::fmt::Write; write!(&mut s, "{}+1={}", x, 
x + 1); to append the formatted text to the String s!

The iter::once function takes any value and produces an iterator that 
yields that value once. This comes in handy when calling functions that take 
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iterators if you don’t want to allocate, or when combined with Iterator::chain 
to append a single item to an existing iterator.

We briefly talked about mem::replace in Chapter 1, but it’s worth bring-
ing up again in case you missed it. This function takes an exclusive refer-
ence to a T and an owned T, swaps the two so that the referent is now the 
owned T, and returns ownership of the previous referent. This is useful 
when you need to take ownership of a value in a situation where you have 
only an exclusive reference, such as in implementations of Drop. See also 
mem::take for when T: Default.

Types

Next, let’s look at some handy standard library types. The BufReader and 
BufWriter types are a must for I/O operations that issue many small read or 
write calls to the underlying I/O resource. These types wrap the respec-
tive underlying Read or Write and implement Read and Write themselves, but 
they additionally buffer the operations to the I/O resource such that many 
small reads do only one large read, and many small writes do only one large 
write. This can significantly improve performance as you don’t have to cross 
the system call barrier into the operating system as often.

The Cow type, mentioned in Chapter 3, is useful when you want flex-
ibility in what types you hold or need flexibility in what you return. You’ll 
rarely use Cow as a function argument (recall that you should let the caller 
allocate if necessary), but it’s invaluable as a return type as it allows you 
to accurately represent the return types of functions that may or may not 
allocate. It’s also a perfect fit for types that can be used as inputs or outputs, 
such as core types in RPC-like APIs. Say we have a type EntityIdentifier like 
in Listing 13-1 that is used in an RPC service interface.

struct EntityIdentifier {
    namespace: String,
    name: String,
}

Listing 13-1: A representation of a combined input/output type that requires allocation

Now imagine two methods: get_entity takes an EntityIdentifier as an 
argument, and find_by returns an EntityIdentifier based on some search 
parameters. The get_entity method requires only a reference since the 
identifier will (presumably) be serialized before being sent to the server. 
But for find_by, the entity will be deserialized from the server response and 
must therefore be represented as an owned value. If we make get_entity 
take &EntityIdentifier, it will mean callers must still allocate owned Strings 
to call get_entity even though that’s not required by the interface, since 
it’s required to construct an EntityIdentifier in the first place! We could 
instead introduce a separate type for get_entity, EntityIdenifierRef, that 
holds only &str types, but then we’d have two types to represent one thing. 
Cow to the rescue! Listing 13-2 shows an EntityIdentifier that instead holds 
Cows internally.
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struct EntityIdentifier<'a> {
    namespace: Cow<'a, str>,
    name: Cow<'a str>,
}

Listing 13-2: A representation of a combined input/output type that does not require 
allocation

With this construction, get_entity can take any EntityIdentifier<'_>, 
which allows the caller to use just references to call the method. And find_
by can return EntityIdentifier<'static>, where all the fields are Cow::Owned. 
One type shared across both interfaces, with no unnecessary allocation 
requirements!

N O T E  If you implement a type this way, I recommend you also provide an into_owned 
method that turns an <'a> instance into a <'static> instance by calling Cow::into_
owned on all the fields. Otherwise, users will have no way to make longer-lasting 
clones of your type when all they have is an <'a>.

The std::sync::Once type is a synchronization primitive that lets you run 
a given piece of code exactly once, at initialization time. This is great for 
initialization that’s part of an FFI where the library on the other side of the 
FFI boundary requires that the initialization is performed only once.

The VecDeque type is an oft-neglected member of std::collections that 
I find myself reaching for surprisingly often—basically, whenever I need 
a stack or a queue. Its interface is similar to that of a Vec, and like Vec its 
in-memory representation is a single chunk of memory. The difference is 
that VecDeque keeps track of both the start and end of the actual data in that 
single allocation. This allows constant-time push and pop from either side of 
the VecDeque, meaning it can be used as a stack, as a queue, or even both at 
the same time. The cost you pay is that the values are no longer necessarily 
contiguous in memory (they may have wrapped around), which means that 
VecDeque<T> does not implement AsRef<[T]>.

Methods

Let’s round off with a rapid-fire look at some neat methods. First up is 
Arc::make_mut, which takes a &mut Arc<T> and gives you a &mut T. If the Arc is 
the last one in existence, it gives you the T that was behind the Arc; other-
wise, it allocates a new Arc<T> that holds a clone of the T, swaps that in for 
the currently referenced Arc, and then gives &mut to the T in the new single-
ton Arc. 

The Clone::clone_from method is an alternative form of .clone() that 
lets you reuse an instance of the type you clone rather than allocate a new 
one. In other words, if you already have an x: T, you can do x.clone_from(y) 
rather than x = y.clone(), and you might save yourself some allocations.

std::fmt::Formatter::debug_* is by far the easiest way to implement Debug 
yourself if #[derive(Debug)] won’t work for your use case, such as if you want 
to include only some fields or expose information that isn’t exposed by the 
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Debug implementations of your type’s fields. When implementing the fmt 
method of Debug, simply call the appropriate debug_ method on the Formatter 
that’s passed in (debug_struct or debug_map, for example), call the included 
methods on the resulting type to fill in details about the type (like field to 
add a field or entries to add a key/value entry), and then call finish.

Instant::elapsed returns the Duration since an Instant was created. This 
is much more concise than the common approach of creating a new Instant 
and subtracting the earlier instance.

Option::as_deref takes an Option<P> where P: Deref and returns 
Option<&P::Target> (there’s also an as_deref_mut method). This simple opera-
tion can make functional transformation chains that operate on Option 
much cleaner by avoiding the inscrutable .as_ref().map(|r| &**r).

Ord::clamp lets you take any type that implements Ord and clamp it 
between two other values of a given range. That is, given a lower limit min 
and an upper limit max, x.clamp(min, max) returns min if x is less than min, max 
if x is greater than max, and x otherwise.

Result::transpose and its counterpart Option::transpose invert types that 
nest Result and Option. That is, transposing a Result<Option<T>, E> gives an 
Option<Result<T, E>>, and vice versa. When combined with ?, this operation 
can make for cleaner code when working with Iterator::next and similar 
methods in fallible contexts.

Vec::swap_remove is Vec::remove’s faster twin. Vec::remove preserves the 
order of the vector, which means that to remove an element in the middle, 
it must shift all the later elements in the vector down by one. This can be 
very slow for large vectors. Vec::swap_remove, on the other hand, swaps the 
to-be-removed element with the last element and then truncates the vector’s 
length by one, which is a constant-time operation. Be aware, though, that it 
will shuffle your vector around and thus invalidate old indexes!

Patterns in the Wild
As you start exploring codebases that aren’t your own, you’ll likely come 
across a couple of common Rust patterns that we haven’t discussed in the 
book so far. Knowing about them will make it easier to recognize them, and 
thus understand their purpose, when you do encounter them. You may even 
find use for them in your own codebase one day!

Index Pointers
Index pointers allow you to store multiple references to data within a data 
structure without running afoul of the borrow checker. For example, if you 
want to store a collection of data so that it can be efficiently accessed in 
more than one way, such as by keeping one HashMap keyed by one field and 
one keyed by a different field, you don’t want to store the underlying data 
multiple times too. You could use Arc or Rc, but they use dynamic reference 
counting that introduces unnecessary overhead, and the extra bookkeeping 
requires you to store additional bytes per entry. You could use references, 
but the lifetimes become difficult if not impossible to manage because the 



234   Chapter 13

data and the references live in the same data structure (it’s a self-referential 
data structure, as we discussed in Chapter 8). You could use raw pointers 
combined with Pin to ensure the pointers remain valid, but that introduces 
a lot of complexity as well as unsafety you then need to carefully consider.

Most crates use index pointers—or, as I like to call them, indeferences—
instead. The idea is simple: store each data entry in some indexable data 
structure like a Vec, and then store just the index in a derived data struc-
ture. To then perform an operation, first use the derived data structure 
to efficiently find the data index, and then use the index to retrieve the 
referenced data. No lifetimes needed—and you can even have cycles in the 
derived data representation if you wish!

The indexmap crate, which provides a HashMap implementation where the 
iteration order matches the map insertion order, provides a good example 
of this pattern. The implementation has to store the keys in two places, 
both in the map of keys to values and in the list of all the keys, but it obvi-
ously doesn’t want to keep two copies in case the key type itself is large. So, 
it uses index pointers. Specifically, it keeps all the key/value pairs in a single 
Vec and then keeps a mapping from key hashes to Vec indexes. To iterate 
over all the elements of the map, it just walks the Vec. To look up a given 
key, it hashes that key, looks that hash up in the mapping, which yields the 
key’s index in the Vec (the index pointer), and then uses that to get the key’s 
value from the Vec.

The petgraph crate, which implements graph data structures and algo-
rithms, also uses this pattern. The crate stores one Vec of all node values 
and another of all edge values and then only ever uses the indexes into 
those Vecs to refer to a node or edge. So, for example, the two nodes associ-
ated with an edge are stored in that edge simply as two u32s, rather than as 
references or reference-counted values.

The trick lies in how you support deletions. To delete a data entry, you 
first need to search for its index in all of the derived data structures and 
remove the corresponding entries, and then you need to remove the data 
from the root data store. If the root data store is a Vec, removing the entry 
will also change the index of one other data entry (when using swap_remove), 
so you then need to go update all the derived data structures to reflect the 
new index for the entry that moved.

Drop Guards
Drop guards provide a simple but reliable way to ensure that a bit of code 
runs even in the presence of panics, which is often essential in unsafe code. 
An example is a function that takes a closure f: FnOnce and executes it under 
mutual exclusion using atomics. Say the function uses compare_exchange (dis-
cussed in Chapter 10) to set a Boolean from false to true, calls f, and then 
sets the Boolean back to false to end the mutual exclusion. But consider 
what happens if f panics—the function will never get to run its cleanup, and 
no other call will be able to enter the mutual exclusion section ever again.

It’s possible to work around this using catch_unwind, but drop guards 
provide an alternative that is often more ergonomic. Listing 13-3 shows 
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how, in our current example, we can use a drop guard to ensure the 
Boolean always gets reset.

fn mutex(lock: &AtomicBool, f: impl FnOnce()) {
    // .. while lock.compare_exchange(false, true).is_err() ..
    struct DropGuard<'a>(&'a AtomicBool);
    impl Drop for DropGuard<'_> {
        fn drop(&mut self) {
            lock.store(true, Ordering::Release);
        }
    }
    let _guard = DropGuard(lock);
    f();
}

Listing 13-3: Using a drop guard to ensure code gets run after an unwinding panic

We introduce the local type DropGuard that implements Drop and place 
the cleanup code in its implementation of Drop::drop. Any necessary state 
can be passed in through the fields of DropGuard. Then, we construct an 
instance of the guard type just before we call the function that might 
panic, which is f here. When f returns, whether due to a panic or because 
it returns normally, the guard is dropped, its destructor runs, the lock is 
released, and all is well.

It’s important that the guard is assigned to a variable that is dropped 
at the end of the scope, after the user-provided code has been executed. 
This means that even though we never refer to the guard’s variable again, it 
needs to be given a name, as let _ = DropGuard(lock) would drop the guard 
immediately—before the user-provided code even runs!

N O T E  Like catch_unwind, drop guards work only when panics unwind. If the code is com-
piled with panic=abort, no code gets to run after the panic.

This pattern is frequently used in conjunction with thread locals, 
when library code may wish to set the thread local state so that it’s valid 
only for the duration of the execution of the closure, and thus needs to 
be cleared afterwards. For example, at the time of writing, Tokio uses this 
pattern to provide information about the executor calling Future::poll to 
leaf resources like TcpStream without having to propagate that information 
through function signatures that are visible to users. It’d be no good if the 
thread local state continued to indicate that a particular executor thread 
was active even after Future::poll returned due to a panic, so Tokio uses a 
drop guard to ensure that the thread local state is reset.

N O T E  You’ll often see Cell or Rc<RefCell> used in thread locals. This is because thread 
locals are accessible only through shared references, since a thread might access a 
thread local again that it is already referencing somewhere higher up in the call stack. 
Both types provide interior mutability without incurring much overhead because 
they’re intended only for single-threaded use, and so are ideal for this use case.
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Extension Traits
Extension traits allow crates to provide additional functionality to types 
that implement a trait from a different crate. For example, the itertools 
crate provides an extension trait for Iterator, which adds a number of con-
venient shortcuts for common (and not so common) iterator operations. As 
another example, tower provides ServiceExt, which adds several more ergo-
nomic operations to wrap the low-level interface in the Service trait from 
tower-service.

Extension traits tend to be useful either when you do not control the 
base trait, as with Iterator, or when the base trait lives in a crate of its own 
so that it rarely sees breaking releases and thus doesn’t cause unnecessary 
ecosystem splits, as with Service.

An extension trait extends the base trait it is an extension of (trait 
ServiceExt: Service) and consists solely of provided methods. It also comes 
with a blanket implementation for any T that implements the base trait 
(impl<T> ServiceExt for T where T: Service {}). Together, these conditions 
ensure that the extension trait’s methods are available on anything that 
implements the base trait.

Crate Preludes
In Chapter 12, we talked about the standard library prelude that makes a 
number of types and traits automatically available without you having to 
write any use statements. Along similar lines, crates that export multiple 
types, traits, or functions that you’ll often use together sometimes define 
their own prelude in the form of a module called prelude, which re-exports 
some particularly common subset of those types, traits, and functions. 
There’s nothing magical about that module name, and it doesn’t get used 
automatically, but it serves as a signal to users that they likely want to add 
use somecrate::prelude::* to files that want to use the crate in question. The * 
is a glob import and tells Rust to use all publicly available items from the indi-
cated module. This can save quite a bit of typing when the crate has a lot of 
items you’ll usually need to name.

N O T E  Items used through * have lower precedence than items that are used explicitly by 
name. This is what allows you to define items in your own crate that overlap with 
what’s in the standard library prelude without having to specify which one to use.

Preludes are also great for crates that expose a lot of extension traits, 
since trait methods can be called only if the trait that defines them is in 
scope. For example, the diesel crate, which provides ergonomic access to 
relational databases, makes extensive use of extension traits so you can 
write code like:

posts.filter(published.eq(true)).limit(5).load::<Post>(&connection)

This line will work only if all the right traits are in scope, which the prelude 
takes care of.
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In general, you should be careful when adding glob imports to your 
code, as they can potentially turn additions to the indicated module into 
backward-incompatible changes. For example, if someone adds a new trait 
to a module you glob-import from, and that new trait makes a method foo 
available on a type that already had some other foo method, code that calls 
foo on that type will no longer compile as the call to foo is now ambiguous. 
Interestingly enough, while the existence of glob imports makes any mod-
ule addition a technically breaking change, the Rust RFC on API evolution 
(RFC 1105; see https://rust-lang.github.io/rfcs/1105-api-evolution.html) does not 
require a library to issue a new major version for such a change. The RFC 
goes into great detail about why, and I recommend you read it, but the gist 
is that minor releases are allowed to require minimally invasive changes to 
dependents, like having to add type annotations in edge cases, because oth-
erwise a large fraction of changes would require new major versions despite 
being very unlikely to actually break any consumers.

Specifically in the case of preludes, using glob imports is usually fine 
when recommended by the vending crate, since its maintainers know that 
their users will use glob imports for the prelude module and thus will take 
that into account when deciding whether a change requires a major version 
bump.

Staying Up to Date
Rust, being such a young language, is evolving rapidly. The language itself, 
the standard library, the tooling, and the broader ecosystem are all still in 
their infancy, and new developments happen every day. While staying on 
top of all the changes would be infeasible, it’s worth your time to keep up 
with significant developments so that you can take advantage of the latest 
and greatest features in your projects.

For monitoring improvements to Rust itself, including new language 
features, standard library additions, and core tooling upgrades, the official 
Rust blog at https://blog.rust-lang.org/ is a good, low-volume place to start. It 
mainly features announcements for each new Rust release. I recommend 
you make a habit of reading these, as they tend to include interesting tid-
bits that will slowly but surely deepen your knowledge of the language. To 
dig a little deeper, I highly recommend reading the detailed changelogs 
for Rust and Cargo as well (links can usually be found near the bottom of 
each release announcement). The changelogs surface changes that weren’t 
large enough to warrant a paragraph in the release notes but that may be 
just what you need two weeks from now. For a less frequently updated news 
source, check in on The Edition Guide at https://doc.rust-lang.org/edition-guide/, 
which outlines what’s new in each Rust edition. Rust editions tend to be 
released every three years.

N O T E  Clippy is often able to tell you when you can take advantage of a new language or 
standard library feature—always enable Clippy!

https://rust-lang.github.io/rfcs/1105-api-evolution.html
https://blog.rust-lang.org/
https://doc.rust-lang.org/edition-guide/


238   Chapter 13

If you’re curious about how Rust itself is developed, you may also want 
to subscribe to the Inside Rust blog at https://blog.rust-lang.org/inside-rust/. It 
includes updates from the various Rust teams, as well as incident reports, 
larger change proposals, edition planning information, and the like. To get 
involved in Rust development yourself—which I highly encourage, as it’s 
a lot of fun and a great learning experience—you can check out the vari-
ous Rust working groups at https://www.rust-lang.org/governance/, which each 
focus on improving a specific aspect of Rust. Find one that appeals to you, 
check in with the group wherever it meets and ask how you may be able to 
help. You can also join the community discussion about Rust internals over 
at https://internals.rust-lang.org/; this is another great way to get insight into 
the thought that goes into every part of Rust’s design and development.

As is the case for most programming languages, much of Rust’s value 
is derived from its community. Not only do the members of the Rust com-
munity constantly develop new work-saving crates and discover new Rust-
specific techniques and design patterns, but they also collectively and 
continuously help one another understand, document, and explain how 
to take best advantage of the Rust language. Everything I have covered in 
this book, and much more, has already been discussed by the community 
in thousands of comment threads, blog posts, and Twitter and Discord con-
versations. Dipping into these discussions even just once in a while is almost 
guaranteed to show you new things about a language feature, a technique, 
or a crate that you didn’t already know.

The Rust community lives in a lot of places, but some good places to 
start are the Users forum (https://users.rust-lang.org/), the Rust subreddit 
(https://www.reddit.com/r/rust/), the Rust Community Discord (https://discord 
.gg/rust-lang-community), and the Rust Twitter account (https://twitter.com/
rustlang). You don’t have to engage with all of these, or all of the time—
pick one you like the vibe of, and check in occasionally!

A great single location for staying up to date with ongoing developments 
is the This Week in Rust blog (https://this-week-in-rust.org/), a “weekly summary 
of [Rust’s] progress and community.” It links to official announcements and 
changelogs as well as popular community discussions and resources, interest-
ing new crates, opportunities for contributions, upcoming Rust events, and 
Rust job opportunities. It even lists interesting language RFCs and compiler 
PRs, so this site truly has it all! Discerning what information is valuable to 
you and what isn’t may be a little daunting, but even just scrolling through 
and clicking occasional links that appear interesting is a good way to keep a 
steady stream of new Rust knowledge trickling into your brain.

N O T E  Want to look up when a particular feature landed on stable? Can I Use…  
(https://caniuse.rs/) has you covered.

What Next?
So, you’ve read this book front to back, absorbed all the knowledge it 
imparts, and are still hungry for more? Great! There are a number of other 

https://blog.rust-lang.org/inside-rust/
https://www.rust-lang.org/governance/
https://internals.rust-lang.org/
https://users.rust-lang.org/
https://www.reddit.com/r/rust/
https://discord.gg/rust-lang-community
https://discord.gg/rust-lang-community
https://twitter.com/rustlang
https://twitter.com/rustlang
https://this-week-in-rust.org/
https://caniuse.rs/
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excellent resources out there for broadening and deepening your knowledge 
and understanding of Rust, and in this very final section I’ll give you a sur-
vey of some of my favorites so that you can keep learning. I’ve divided them 
into subsections based on how different people prefer to learn so that you 
can find resources that’ll work for you.

N O T E  A challenge with learning on your own, especially in the beginning, is that progress 
is hard to perceive. Implementing even the simplest of things can take an outsized 
amount of time when you have to constantly refer to documentation and other 
resources, ask for help, or debug to learn how some aspect of Rust works. All of that 
non-coding work can make it seem like you’re treading water and not really improv-
ing. But you’re learning, which is progress in and of itself—it’s just harder to notice 
and appreciate.

Learn by Watching
Watching experienced developers code is essentially a life hack to remedy 
the slow starting phase of solo learning. It allows you to observe the pro-
cess of designing and building while utilizing someone else’s experience. 
Listening to experienced developers articulate their thinking and explain 
tricky concepts or techniques as they come up can be an excellent alter-
native to struggling through problems on your own. You’ll also pick up a 
variety of auxiliary knowledge like debugging techniques, design patterns, 
and best practices. Eventually you will have to sit down and do things your-
self—it’s the only way to check that you actually understand what you’ve 
observed—but piggybacking on the experience of others will almost cer-
tainly make the early stages more pleasant. And if the experience is interac-
tive, that’s even better!

So, with that said, here are some Rust video channels that I recommend:

Perhaps unsurprisingly, my own channel: https://www.youtube.com/c/
JonGjengset/. I have a mix of long-form coding videos and short(er) code-
based theory/concept explanation videos, as well as occasional videos 
that dive into interesting Rust coding stories.

The Awesome Rust Streaming listing: https://github.com/jamesmunns/ 
awesome-rust-streaming/. This resource lists a wide variety of developers 
who stream Rust coding or other Rust content.

The channel of Tim McNamara, the author of Rust in Action: https://
www.youtube.com/c/timClicks/. Tim’s channel, like mine, splits its time 
between implementation and theory, though Tim has a particular 
knack for creative visual projects, which makes for fun viewing.

Jonathan Turner’s Systems with JT channel: https://www.youtube.com/c/
SystemswithJT/. Jonathan’s videos document their work on Nushell, 
their take on a “new type of shell,” providing a great sense of what it’s 
like to work on a nontrivial existing codebase.

Ryan Levick’s channel: https://www.youtube.com/c/RyanLevicksVideos/. Ryan  
mainly posts videos that tackle particular Rust concepts and walks 

https://www.youtube.com/c/JonGjengset/
https://www.youtube.com/c/JonGjengset/
https://github.com/jamesmunns/awesome-rust-streaming/
https://github.com/jamesmunns/awesome-rust-streaming/
https://www.youtube.com/c/timClicks/
https://www.youtube.com/c/timClicks/
https://www.youtube.com/c/SystemswithJT/
https://www.youtube.com/c/SystemswithJT/
https://www.youtube.com/c/RyanLevicksVideos/
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through them using concrete code examples, but he also occasionally 
does implementation videos (like FFI for Microsoft Flight Simulator!) 
and deep dives into how well-known crates work under the hood.

Given that I make Rust videos, it should come as no surprise that I am 
a fan of this approach to teaching. But this kind of receptive or interactive 
learning doesn’t have to come in the form of videos. Another great avenue 
for learning from experienced developers is pair programming. If you have 
a colleague or friend with expertise in a particular aspect of Rust you’d like 
to learn, ask if you can do a pair-programming session with them to solve a 
problem together!

Learn by Doing
Since your ultimate goal is to get better at writing Rust, there’s no substitute 
for programming experience. No matter what or how many resources you 
learn from, you need to put that learning into practice. However, finding a 
good place to start can be tricky, so here I’ll give some suggestions.

Before I dive into the list, I want to provide some general guidance on 
how to pick projects. First, choose a project that you care about, without 
worrying too much whether others care about it. While there are plenty 
of popular and established Rust projects out there that would love to have 
you as a contributor, and it’s fun to be able to say “I contributed to the well-
known library X,” your first priority must be your own interest. Without 
concrete motivation, you’ll quickly lose steam and find contributing to be 
a chore. The very best targets are projects that you use yourself and have 
experienced problems with—go fix them! Nothing is more satisfying than 
getting rid of a long-standing personal nuisance while also contributing 
back to the community.

Okay, so back to project suggestions. First and foremost, consider con-
tributing to the Rust compiler and its associated tools. It’s a high-quality 
codebase with good documentation and an endless supply of issues (you 
probably know of some yourself), and there are several great mentors who 
can provide outlines for how to approach solving issues. If you look through 
the issue tracker for issues marked E-easy or E-mentor, you’ll likely find a 
good candidate quickly. As you gain more experience, you can keep level-
ing up to contribute to trickier parts.

If that’s not your cup of tea, I recommend finding something you use 
frequently that’s written in another language and porting it to Rust—not 
necessarily with the intention of replacing the original library or tool, but 
just because the experience will allow you to focus on writing Rust without 
having to spend too much time coming up with all the functionality your-
self. If it turns out well, the fact that it already exists suggests that someone 
else also needed it, so there may be a wider audience for your port too! Data 
structures and command-line tools often make for great porting subjects, 
but find a niche that appeals to you.

Should you be more of a “build it from scratch” kind of person, I recom-
mend looking back at your own development experience so far and thinking 
about similar code you’ve ended up writing in multiple projects (whether 
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in Rust or in other languages). Such repetition tends to be a good signal 
that something is reusable and could be turned into a library. If nothing 
comes to mind, David Tolnay maintains a list of smaller utility crates that 
other Rust developers have requested at https://github.com/dtolnay/request-for-
implementation/ that may provide a source of inspiration. If you’re looking for 
something more substantial and ambitious, there’s also the Not Yet Awesome 
list at https://github.com/not-yet-awesome-rust/not-yet-awesome-rust/ that lists 
things that should exist in Rust but don’t (yet).

Learn by Reading
Although the state of affairs is constantly improving, finding good Rust 
reading material beyond the beginner level can still be tricky. Here’s a col-
lection of pointers to some of my favorite resources that continue to teach 
me new things or serve as good references when I have particularly niche or 
nuanced questions.

First, I recommend looking through the official virtual Rust books 
linked from https://www.rust-lang.org/learn/. Some, like the Cargo book, are 
more reference-like while others, like the Embedded book, are more guide-
like, but they’re all deep sources of solid technical information about their 
respective topics. The Rustonomicon (https://doc.rust-lang.org/nomicon/), in par-
ticular, is a lifesaver when you’re writing unsafe code.

Two more books that are worth checking out are the Guide to rustc 
Development (https://rustc-dev-guide.rust-lang.org/) and the Standard Library 
Developers Guide (https://std-dev-guide.rust-lang.org/). These are fantastic 
resources if you’re curious about how the Rust compiler does what it does 
or how the standard library is designed, or if you want some pointers before 
you try your hand at contributing to Rust itself. The official Rust guidelines 
are also a treasure trove of information; I’ve already mentioned the Rust 
API Guidelines (https://rust-lang.github.io/api-guidelines/) in the book, but a 
Rust Unsafe Code Guidelines Reference is also available (https://rust-lang.github 
.io/unsafe-code-guidelines/), and by the time you read this book there may 
be more.

N O T E  One of the resources listed at https://www.rust-lang.org/learn/ is the Rust 
Reference, which is essentially a full specification for the Rust language. While parts 
of it are quite dry, like the exact grammar used for parsing or basics about the in-
memory representations of the primitive types, some of it is fascinating reading, like 
the section on type layout and the enumeration of behavior considered undefined.

There are also a number of unofficial virtual Rust books that are  
enormously valuable collections of experience and knowledge. The Little  
Book of Rust Macros (https://veykril.github.io/tlborm/), for example, is indis-
pensable if you want to write nontrivial declarative macros, and The Rust 
Performance Book (https://nnethercote.github.io/perf-book/) is filled with tips and  
tricks for improving the performance of Rust code both at the micro and 
the macro level. Other great resources include the Rust Fuzz Book (https://
rust-fuzz.github.io/book/), which explores fuzz testing in more detail, and  
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the Rust Cookbook (https://rust-lang-nursery.github.io/rust-cookbook/), which sug-
gests idiomatic solutions to common programming tasks. There’s even a 
resource for finding more books, The Little Book of Rust Books (https://lborb.
github.io/book/unofficial.html)!

If you prefer more hands-on reading, the Tokio project has published 
mini-redis (https://github.com/tokio-rs/mini-redis/), an incomplete but idiomatic 
implementation of a Redis client and server that’s extremely well docu-
mented and specifically written to serve as a guide to writing asynchronous 
code. If you’re more of a data structures person, Learn Rust with Entirely Too 
Many Linked Lists (https://rust-unofficial.github.io/too-many-lists/) is an enlight-
ening and fun read that gets into lots of gnarly details about ownership and 
references. If you’re looking for something closer to the hardware, Philipp 
Oppermann’s Writing an OS in Rust (https://os.phil-opp.com/) goes through 
the whole operating system stack in great detail while teaching you good 
Rust patterns in the process. I also highly recommend Amos’s collection of 
articles (https://fasterthanli.me/tags/rust/) if you want a wide sampling of inter-
esting deep dives written in a conversational style.

When you feel more confident in your Rust abilities and need more of 
a quick reference than a long tutorial, I’ve found the Rust Language Cheat 
Sheet (https://cheats.rs/) great for looking things up quickly. It also provides 
very nice visual explanations for most topics, so even if you’re looking up 
something you’re not intimately familiar with already, the explanations are 
pretty approachable.

And finally, if you want to put all of your Rust understanding to the 
test, go give David Tolnay’s Rust Quiz (https://dtolnay.github.io/rust-quiz/) a try. 
There are some real mind-benders in there, but each question comes with 
a thorough explanation of what’s going on, so even if you get one wrong, 
you’ll have learned from the experience!

Learn by Teaching
My experience has been that the best way to learn something well and 
thoroughly, by far, is to try to teach it to others. I have learned an enor-
mous amount from writing this book, and I learn new things every time 
I make a new Rust video or podcast episode. So, I wholeheartedly recom-
mend that you try your hand at teaching others about some of the things 
you’ve learned from reading this book or that you learn from here on out. 
It can take whatever form you prefer: in person, writing a blog post, tweet-
ing, making a video or podcast, or giving a talk. The important thing is 
that you try to convey your newfound knowledge in your own words to 
someone who doesn’t already understand the topic—in doing so, you also 
give back to the community so that the next you that comes along has a 
slightly easier time getting up to speed. Teaching is a humbling and deeply 
educational experience, and I cannot recommend it highly enough.

N O T E  Whether you’re looking to teach or be taught, make sure to visit Awesome Rust 
Mentors (https://rustbeginners.github.io/awesome-rust-mentors/).

https://rust-lang-nursery.github.io/rust-cookbook/
https://lborb.github.io/book/unofficial.html
https://lborb.github.io/book/unofficial.html
https://github.com/tokio-rs/mini-redis/
https://rust-unofficial.github.io/too-many-lists/
https://os.phil-opp.com/
https://fasterthanli.me/tags/rust/
https://cheats.rs/
https://dtolnay.github.io/rust-quiz/
https://rustbeginners.github.io/awesome-rust-mentors/
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Summary
In this chapter, we’ve covered Rust beyond what exists in your local work-
space. We surveyed useful tools, libraries, and Rust features; looked at how 
to stay up to date as the ecosystem continues to evolve; and then discussed 
how you can get your hands dirty and contribute back to the ecosystem 
yourself. Finally, we discussed where you can go next to continue your Rust 
journey now that this book has reached its end. And with that, there’s little 
more to do than to declare:

}
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