

Programming Clojure, Third
Edition

by Alex Miller, with Stuart Halloway, and Aaron Bedra

Version: P1.0 (February 2018)

Copyright © 2018 The Pragmatic Programmers, LLC. This book is licensed to the individual
who purchased it. We don't copy-protect it because that would limit your ability to use it for
your own purposes. Please don't break this trust—you can use this across all of your devices
but please do not share this copy with other members of your team, with friends, or via file
sharing services. Thanks.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic
Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g device are
trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

About the Pragmatic Bookshelf
The Pragmatic Bookshelf is an agile publishing company. We’re here because we want to
improve the lives of developers. We do this by creating timely, practical titles, written by
programmers for programmers.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Our ebooks do not contain any Digital Restrictions Management, and have always been
DRM-free. We pioneered the beta book concept, where you can purchase and read a book
while it’s still being written, and provide feedback to the author to help make a better book
for everyone. Free resources for all purchasers include source code downloads (if
applicable), errata and discussion forums, all available on the book's home page at
pragprog.com. We’re here to make your life easier.

New Book Announcements
Want to keep up on our latest titles and announcements, and occasional special offers? Just
create an account on pragprog.com (an email address and a password is all it takes) and
select the checkbox to receive newsletters. You can also follow us on twitter as @pragprog.

About Ebook Formats
If you buy directly from pragprog.com, you get ebooks in all available formats for one price.
You can synch your ebooks amongst all your devices (including iPhone/iPad, Android,
laptops, etc.) via Dropbox. You get free updates for the life of the edition. And, of course,
you can always come back and re-download your books when needed. Ebooks bought from
the Amazon Kindle store are subject to Amazon's polices. Limitations in Amazon's file
format may cause ebooks to display differently on different devices. For more information,
please see our FAQ at pragprog.com/frequently-asked-questions/ebooks. To learn more
about this book and access the free resources, go to https://pragprog.com/book/shcloj3, the
book's homepage.

Thanks for your continued support,

Andy Hunt
The Pragmatic Programmers

http://pragprog.com
https://pragprog.com
https://pragprog.com
https://pragprog.com/frequently-asked-questions/ebooks
https://pragprog.com/book/shcloj3

The team that produced this book includes: Andy Hunt (Publisher),
Janet Furlow (VP of Operations), Brian MacDonald (Managing Editor),
Jacquelyn Carter (Supervising Editor), Paula Robertson (Copy Editor),
Potomac Indexing, LLC (Indexing), Gilson Graphics (Layout)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

 Acknowledgments

 Introduction
Who This Book Is For
What’s in This Book
How to Read This Book
Notation Conventions
Web Resources and Feedback
Downloading Sample Code

1. Getting Started
Simplicity and Power in Action
Clojure Coding Quick Start
Navigating Clojure Libraries
Wrapping Up

2. Exploring Clojure
Reading Clojure
Functions
Vars, Bindings, and Namespaces
Metadata
Calling Java
Comments
Flow Control
Where’s My for Loop?
Wrapping Up

3. Unifying Data with Sequences

Everything Is a Sequence
Using the Sequence Library
Lazy and Infinite Sequences
Clojure Makes Java Seq-able
Calling Structure-Specific Functions
Wrapping Up

4. Functional Programming
Functional Programming Concepts
How to Be Lazy
Lazier Than Lazy
Recursion Revisited
Eager Transformations
Wrapping Up

5. Specifications
Defining Specs
Validating Data
Validating Functions
Generative Function Testing
Wrapping Up

6. State and Concurrency
Concurrency, Parallelism, and Locking
Refs and Software Transactional Memory
Use Atoms for Uncoordinated, Synchronous Updates
Use Agents for Asynchronous Updates
Managing Per-Thread State with Vars
A Clojure Snake
Wrapping Up

7. Protocols and Datatypes
Programming to Abstractions
Interfaces

Protocols
Datatypes
Records
reify
Wrapping Up

8. Macros
When to Use Macros
Writing a Control Flow Macro
Making Macros Simpler
Taxonomy of Macros
Wrapping Up

9. Multimethods
Living Without Multimethods
Defining Multimethods
Moving Beyond Simple Dispatch
Creating Ad Hoc Taxonomies
When Should I Use Multimethods?
Wrapping Up

10. Java Interop
Creating Java Objects in Clojure
Calling Clojure From Java
Exception Handling
Optimizing for Performance
A Real-World Example
Wrapping Up

11. Building an Application
Getting Started
Developing the Game Loop
Representing Progress
Implementing Players

Interactive Play
Documenting and Testing Your Game
Farewell

 Bibliography

Copyright © 2018, The Pragmatic Bookshelf.

Early praise for Programming Clojure,
Third Edition
Programming Clojure is an inspiration of Clojure knowledge and has furthered my
understanding of the nuances of Clojure. One of the new sections includes a step-by-
step on building an application that made me want to drop everything and code along.

→ Nola Stowe
CTO/Founder, Ruby Geek LLC

If you are interested in learning the ins and outs of the Clojure language, Programming
Clojure will provide you with a valuable resource. The book not only covers the basics
of the language, but also builds on the basics to allow readers to understand and apply
more advanced concepts like spec and macros.

→ Joy Clark
Consultant, innoQ Deutschland GmbH

This book is very effective at teaching Clojure’s unique take on functional
programming and data manipulation. It explains concepts clearly and covers the
mechanics of nearly every part of the language, with helpful commentary that goes
beyond the code.

→ Ghadi Shayban
Engineer, healthfinch

The third edition of Programming Clojure is an excellent resource for new and old
Clojure programmers. It provides a thorough account of the language’s rationale and
features, including approachable explanations of more recent features like transducers
and spec.

→ Michael Fogleman
Developer

Acknowledgments

Many people have contributed to what is good in this book. The problems and errors
that remain are ours alone.

Thanks to Rich Hickey for creating the excellent Clojure language and fostering a
community around it. Thanks to the awesome team at Cognitect (formerly Relevance)
for creating an atmosphere in which good ideas can grow and thrive. Thanks to the
Clojure community for using Clojure and turning an idea into a working ecosystem.

Thanks to all the readers and technical reviewers who have suggested improvements
across all three editions of the book. Jeff Brown suggested the coin toss problem in
Lazier Than Lazy. David Liebke wrote the original content for Chapter 7, Protocols
and Datatypes .

Thanks to everyone at Pragmatic Bookshelf. Thanks especially to our editor, Jacquelyn
Carter, and former editors Michael Swaine and Susannah Pfalzer for focus and advice.
Thanks also to Dave Thomas and Andy Hunt.

Thanks to my wife and family for their love, support, and the precious gift of time to
create.—Alex

Thanks to my wife, Joey, and to my children, Hattie, Harper, Mabel Faire, and
Truman. You all make the sun rise.—Stuart

Thanks to my wife, Erin, for endless love and encouragement.—Aaron

Copyright © 2018, The Pragmatic Bookshelf.

Introduction

Clojure is a dynamic programming language for the Java Virtual Machine (JVM) with
a compelling combination of features:

Clojure is elegant. Clojure’s clean, careful design lets you write programs that get
right to the essence of a problem, without a lot of clutter and ceremony.

Clojure is Lisp reloaded. Clojure has the power inherent in Lisp but is not
constrained by the history of Lisp.

Clojure is a functional language. Data structures are immutable, and most
functions are free from side effects. This makes it easier to write correct programs
and to compose large programs from smaller ones.

Clojure simplifies concurrent programming. Many languages build a concurrency
model around locking, which is difficult to use correctly. Clojure provides several
alternatives to locking: software transactional memory, agents, atoms, and
dynamic variables.

Clojure embraces Java. Calling from Clojure to Java is direct and fast, with no
translation layer.

Unlike many popular dynamic languages, Clojure is fast. Clojure is written to
take advantage of the optimizations possible on modern JVMs.

Many other languages cover some of the features described in the previous list. Of all
these languages, Clojure stands out. The individual features listed earlier are powerful
and interesting. Their clean synergy in Clojure is compelling. We will cover all these
features and more in Chapter 1, Getting Started.

Who This Book Is For
Clojure is a powerful, general-purpose programming language. As such, this book is
for programmers with experience in a programming language like Java, C#, Python, or
Ruby, but new to Clojure and looking for a powerful, elegant language.

Clojure is built on top of the Java Virtual Machine, and it is fast. This book will be of
particular interest to Java programmers who want the expressiveness of a dynamic
language without compromising on performance.

Clojure is helping to redefine what features belong in a general-purpose language. If
you program in Lisp, use a functional language such as Haskell, or write explicitly
concurrent programs, you’ll enjoy Clojure. Clojure combines ideas from Lisp,
functional programming, and concurrent programming and makes them more
approachable to programmers seeing these ideas for the first time.

Clojure is part of a larger phenomenon. Languages such as Erlang, F#, Haskell, and
Scala have garnered attention recently for their support of functional programming or
their concurrency model. Enthusiasts of these languages will find much common
ground with Clojure.

What’s in This Book
Chapter 1, Getting Started demonstrates Clojure’s elegance as a general-purpose
language, plus the functional style and concurrency model that make Clojure unique. It
also walks you through installing Clojure and developing code interactively at the
REPL.

Chapter 2, Exploring Clojure is a breadth-first overview of all of Clojure’s core
constructs. After this chapter, you’ll be able to read most day-to-day Clojure code.

The next two chapters cover functional programming. Chapter 3, Unifying Data with
Sequences shows how all data can be unified under the powerful sequence metaphor.

Chapter 4, Functional Programming shows you how to write functional code in the
same style used by the sequence library.

Chapter 5, Specifications demonstrates how to write specifications for your data
structures and functions and use them to aid in development and testing.

Chapter 6, State and Concurrency delves into Clojure’s concurrency model. Clojure
provides four powerful models for dealing with concurrency, plus all of the goodness
of Java’s concurrency libraries.

Chapter 7, Protocols and Datatypes walks through records, types, and protocols in
Clojure. These concepts were introduced in Clojure 1.2.0 and enhanced in 1.3.0.

Chapter 8, Macros shows off Lisp’s signature feature. Macros take advantage of the
fact that Clojure code is data to provide metaprogramming abilities that are difficult or
impossible in anything but a Lisp.

Chapter 9, Multimethods covers one of Clojure’s answers to polymorphism.
Polymorphism usually means “take the class of the first argument and dispatch a
method based on that.” Clojure’s multimethods let you choose any function of all the
arguments and dispatch based on that.

Chapter 10, Java Interop shows you how to call Java from Clojure and call Clojure
from Java. You’ll see how to take Clojure straight to the metal and get Java-level
performance.

Finally, Chapter 11, Building an Application provides a view into a complete Clojure

workflow. You will build an application from scratch, working through solving the
various parts to a problem and thinking about simplicity and quality.

How to Read This Book
All readers should begin by reading the first two chapters in order. Pay particular
attention to Simplicity and Power in Action, which provides an overview of Clojure’s
advantages.

Experiment continuously. Clojure provides an interactive environment where you can
get immediate feedback; see Using the REPL for more information.

After you read the first two chapters, skip around as you like. But read Chapter 3,
Unifying Data with Sequences before you read Chapter 6, State and Concurrency.
These chapters lead you from Clojure’s immutable data structures to a powerful model
for writing correct concurrency programs.

As you make the move to longer code examples in later chapters, make sure you use
an editor that provides Clojure indentation for you. If you can, try to use an editor that
supports parentheses balancing, such as Emacs’ paredit mode or the Cursive plugin for
IntelliJ. This feature will be a huge help as you’re learning to program in Clojure.

For Functional Programmers

Clojure’s approach to FP strikes a balance between academic purity and the
realities of execution on the current generation of JVMs. Read Chapter 4,
Functional Programming carefully to understand how Clojure idioms differ from
languages such as Haskell.

The concurrency model of Clojure (Chapter 6, State and Concurrency) provides
several explicit ways to deal with side effects and state and will make FP
appealing to a broader audience.

For Java/C# Programmers

Read Chapter 2, Exploring Clojure carefully. Clojure has very little syntax
(compared to Java or C#), and we cover the ground rules fairly quickly.

Pay close attention to macros in Chapter 8, Macros . These are the most alien part
of Clojure when viewed from a Java or C# perspective.

For Lisp Programmers

Some of Chapter 2, Exploring Clojure will be review, but read it anyway. Clojure
preserves the key features of Lisp, but it breaks with Lisp tradition in several
places, and they are covered here.

Pay close attention to the lazy sequences in Chapter 4, Functional Programming.

If you like Emacs, get a mode for Clojure that makes you happy before working
through the code examples in later chapters. There are many options, but consider
inf-clojure for a minimalist setup and CIDER for a full-feature environment.

For Perl/Python/Ruby Programmers

Read Chapter 6, State and Concurrency carefully. Intraprocess concurrency is
very important in Clojure.

Embrace macros (Chapter 8, Macros). But do not expect to easily translate
metaprogramming idioms from your language into macros. Remember always
that macros execute at read time, not runtime.

Notation Conventions
The following notation conventions are used throughout the book.

Literal code examples use the following font:

 (+ 2 2)

The result of executing a code example is preceded by ->.

 (+ 2 2)
 -> 4

Where console output cannot easily be distinguished from code and results, it’s
preceded by a pipe character (|).

 (println "hello")
 | hello
 -> nil

When introducing a Clojure form for the first time, we’ll show the grammar for the
form like this:

 (example-fn required-arg)
 (example-fn optional-arg?)
 (example-fn zero-or-more-arg*)
 (example-fn one-or-more-arg+)
 (example-fn & collection-of-variable-args)

The grammar is informal, using ?, *, +, and & to document different argument-passing
styles, as shown previously.

Clojure code is organized into libs (libraries). Where examples in the book depend on
a library that’s not part of the Clojure core, we document that dependency with a
require form:

 (require '[lib-name :refer [var-names+] :as alias])

The require form has several options. The :refer option can be used to make either
specific vars (or all vars with :all) available in the current namespace. The :alias option
can be used to create an alias for references to the library. For example, a commonly
used function is file, from the clojure.java.io library:

(require '[clojure.java.io :as io])
 (io/file "hello.txt")
 -> #<File hello.txt>

Clojure returns nil from a successful call to require. For brevity, this is omitted from
the example listings.

While reading the book, you’ll enter code in an interactive environment called the
REPL. The REPL prompt looks like this:

 user=>

The user in the prompt indicates the namespace you’re currently working in. For most
of the examples, the current namespace is irrelevant. Where the namespace is
irrelevant, we use the following syntax for interaction with the REPL:

 (+ 2 2) ; input line without namespace prompt
 -> 4 ; return value

In those instances where the current namespace is important, we use this:

 user=> (+ 2 2) ; input line with namespace prompt
 -> 4 ; return value

Web Resources and Feedback
Programming Clojure’s official home on the web is the Programming Clojure home
page[1] at the Pragmatic Bookshelf website. From there, you can order electronic or
paper copies of the book and download sample code. You can also offer feedback by
submitting errata entries[2] or posting in the forum.[3]

[1]

[2]

[3]

[4]

Downloading Sample Code
The sample code for the book is available from the following location:

The Programming Clojure home page[4] links to the official copy of the source
code and is updated to match each release of the book.

Individual examples are in the examples directory, unless otherwise noted.

Throughout the book, listings begin with their filename, set apart from the actual code
by a gray background. For example, the following listing comes from
src/examples/preface.clj:

src/examples/preface.clj

 (println "hello")

If you’re reading the book in PDF form, you can click the little gray box preceding a
code listing to download that listing directly. With the sample code in hand, you are
ready to get started. We’ll begin by meeting the combination of features that make
Clojure unique.

Footnotes

https://www.pragprog.com/titles/shcloj3/programming-clojure

https://www.pragprog.com/titles/shcloj3/errata

http://forums.pragprog.com/forums/439

http://www.pragprog.com/titles/shcloj3

Copyright © 2018, The Pragmatic Bookshelf.

http://media.pragprog.com/titles/shcloj3/code/src/examples/preface.clj
https://www.pragprog.com/titles/shcloj3/programming-clojure
https://www.pragprog.com/titles/shcloj3/errata
http://forums.pragprog.com/forums/439
http://www.pragprog.com/titles/shcloj3

Chapter 1

Getting Started

Clojure is a functional programming language on the JVM with great support for
managing state and concurrency. Two key concepts drive everything in Clojure:
simplicity and power.

Simplicity has several meanings that are relevant in software, but the definition we care
about is the original one: a thing is simple if it is not compound. Simple components
allow systems to do what their designers intend, without also doing other things
irrelevant to the task at hand.

Power also has many meanings. The one we care about is whether the capabilities are
adequate for the tasks we want to undertake. To feel powerful as a programmer, you
need to build on a platform that’s itself capable and widely deployed, such as the JVM.
Then, your tools must give you full, unrestricted access to that power. Power is often
an essential requirement for projects that must get the most out of their platform.

As programmers, we’ve spent years choosing between power and simplicity in our
tools. Some trade-offs are fundamental, but power vs. simplicity is not one of them.
Clojure shows that they can instead go hand in hand.

We’re going to start by diving into some examples to see how Clojure differentiates
itself from other languages. Then, one of the ways Clojure puts simple and powerful
tools in your hands is by encouraging interactive development with the REPL. We’ll
see how to work efficiently at the REPL and also how to use the REPL to explore the
environment and other libraries.

Simplicity and Power in Action
All of the distinctive features in Clojure are there to provide simplicity, power, or both.
Some of these features include concise and expressive programs, the power of Lisp
updated with a modern syntax, an immutable-first approach to state and concurrency,
and an embrace of the JVM host and its ecosystem. Let’s look at a few examples that
demonstrate these high-level features.

Clojure Is Elegant
Clojure is high signal, low noise. As a result, Clojure programs are short programs.
Short programs are cheaper to build, cheaper to deploy, and cheaper to maintain. This
is particularly true when the programs are concise rather than merely terse. As an
example, consider the following Java code, from Apache Commons:[5]

data/snippets/isBlank.java

 public class StringUtils {
 public static boolean isBlank(final CharSequence str) {
 int strLen;
 if (str == null || (strLen = str.length()) == 0) {
 return true;
 }
 for (int i = 0; i < strLen; i++) {
 if (Character.isWhitespace(str.charAt(i)) == false) {
 return false;
 }
 }
 return true;
 }
 }

The isBlank method checks to see whether a string is blank: either empty or consisting
of only whitespace. Here is a similar implementation in Clojure:

src/examples/introduction.clj

 (defn blank? [str]
 (every? #(Character/isWhitespace %) str))

The Clojure version is shorter. But even more important, it’s simpler: it has no
variables, no mutable state, and no branches. This is possible thanks to higher-order

http://media.pragprog.com/titles/shcloj3/code/data/snippets/isBlank.java
http://media.pragprog.com/titles/shcloj3/code/src/examples/introduction.clj

functions. A higher-order function is a function that takes functions as arguments
and/or returns functions as results. The every? function takes a function and a
collection as its arguments and returns true if that function returns true for every item
in the collection. Note that this definition also works correctly for special cases like
null and the empty string without requiring explicit checks.

Because the Clojure version has no branches, it’s easier to read and test. These benefits
are magnified in larger programs. Also, while the code is concise, it’s still readable. In
fact, the Clojure program reads like a definition of blank: a string is blank if every
character in it is whitespace. This is much better than the Commons method, which
hides the definition of blank behind the implementation detail of loops and if
statements.

As another example, consider defining a trivial Person class in Java:

data/snippets/Person.java

 public class Person {
 private String firstName;
 private String lastName;

 public Person(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 }

In Clojure, you’d define Person with a single line:

http://media.pragprog.com/titles/shcloj3/code/data/snippets/Person.java

 (defrecord Person [first-name last-name])

and work with the record like so:

 (def foo (->Person "Aaron" "Bedra"))
 -> #'user/foo
 (:first-name foo)
 -> Aaron

defrecord and related functions are covered in Protocols .

Other than being an order of magnitude shorter, the Clojure approach differs in that a
Clojure Person is immutable. Immutable data structures are inherently thread safe, and
update capabilities can be layered when using Clojure’s references, agents, and atoms,
which are covered in Chapter 6, State and Concurrency. Because records are
immutable, Clojure also provides correct implementations of hashCode and equals
automatically.

Clojure has a lot of elegance baked in, but if you find something missing, you can add
it yourself, thanks to the power of Lisp.

Clojure Is Lisp Reloaded
Clojure is a Lisp. Lisps have a tiny language core, almost no syntax, and a powerful
macro facility. With these features, you can bend Lisp to meet your design, instead of
the other way around. Clojure takes a new approach to Lisp by keeping the essential
ideas while embracing a set of syntax enhancements that make Clojure friendlier to
non-Lisp programmers.

Consider the following snippet of Java code:

 public class Person {
 private String firstName;
 public String getFirstName() {
 // continues

In this code, getFirstName is a method. Methods are polymorphic and give the
programmer control over meaning, but the interpretation of every other word in the
example is fixed by the language. Sometimes you really need to change what these
words mean. So, for example, you might do the following:

Redefine private to mean “private for production code but public for serialization
and unit tests.”

Redefine class to automatically generate getters and setters for private fields,
unless otherwise directed.

Create a subclass of class that provides callback hooks for life-cycle events. For
example, a life-cycle--aware class could fire an event whenever an instance of the
class is created.

These kinds of needs are commonplace. In most languages, you would have to petition
the language implementer to add the kinds of features mentioned here. In Clojure, you
can add your own language features with macros (Chapter 8, Macros). Clojure itself is
built out of macros such as defrecord:

 (defrecord name [arg1 arg2 arg3])

If you need different semantics, write your own macro. If you want a variant of records
with strong typing and configurable nil-checking for all fields, you can create your
own defrecord macro, to be used like this:

 (defrecord name [Type :arg1 Type :arg2 Type :arg3]
 :allow-nils false)

This ability to reprogram the language from within the language is the unique
advantage of Lisp. You will see facets of this idea described in various ways:

Lisp is homoiconic.[6] That is, Lisp code is just Lisp data. This makes it easy for
programs to write other programs.

The whole language is there, all the time. Paul Graham’s essay “Revenge of the
Nerds”[7] explains why this is so powerful.

The downside of Lisp’s simple, regular syntax, at least for beginners, is the prevalence
of parentheses and lists as the core datatype. Clojure offers a combination of features
that make Lisp more approachable:

Clojure generalizes Lisp’s physical list into an abstraction called a sequence. This
preserves the power of lists, while extending that power to a variety of other data
structures, including ones you make yourself.

Clojure’s reliance on the JVM provides a standard library and a deployment
platform with great reach.

Clojure’s approach to symbol resolution and syntax quoting makes it easier to

write many common macros.

Many Clojure programmers will be new to Lisp, and they’ve probably heard bad
things about all those parentheses. Clojure keeps the parentheses (and the power of
Lisp!) but improves on traditional Lisp syntax in several ways:

Clojure provides a convenient literal syntax for a wide variety of data structures
besides just lists: regular expressions, maps, sets, vectors, and metadata. These
features make Clojure code less “listy” than most Lisps. For example, function
parameters are specified in a vector [] instead of a list ().

src/examples/introduction.clj

 (defn hello-world [username]
 (println (format "Hello, %s" username)))

The vector makes the argument list jump out visually and makes Clojure function
definitions easy to read.

In Clojure, unlike most Lisps, commas to separate elements are optional—this
provides concise literal collections. In fact, Clojure treats commas as whitespace
and ignores them completely.

 ; make vectors look like arrays in other languages
 [1, 2, 3, 4]
 -> [1 2 3 4]

Idiomatic Clojure does not nest parentheses more than necessary. Consider the
cond macro, present in both Common Lisp and Clojure. cond evaluates a set of
test/result pairs, returning the first result for which a test form yields true. Each
test/result pair is grouped with parentheses:

 ; Common Lisp cond
 (cond ((= x 10) "equal")
 ((> x 10) "more"))

Clojure avoids the extra parentheses:

 ; Clojure cond
 (cond (= x 10) "equal"
 (> x 10) "more")

This is an aesthetic decision, and both approaches have their supporters. The
important thing is that Clojure takes the opportunity to improve on Lisp traditions

http://media.pragprog.com/titles/shcloj3/code/src/examples/introduction.clj

when it can do so without compromising Lisp’s power.

Clojure is an excellent Lisp, for both Lisp experts and Lisp beginners.

Clojure Is a Functional Language
Clojure is a functional language but not a pure functional language like Haskell.
Functional languages have the following properties:

Functions are first-class objects. That is, functions can be created at runtime,
passed around, returned, and in general, used like any other datatype.

Data is immutable.

Functions are pure; that is, they have no side effects.

For many tasks, functional programs are easier to understand, less error prone, and
much easier to reuse. For example, the following short program searches a database of
compositions for every composer who has written a composition named “Requiem”:

 (for [c compositions :when (= (:name c) "Requiem")] (:composer c))
 -> ("W. A. Mozart" "Giuseppe Verdi")

The name for does not introduce a loop but a list comprehension. Read the earlier code
as, “For each c in compositions, where the name of c is "Requiem", yield the
composer of c.” List comprehension is covered more fully in Transforming Sequences .

This example has four desirable properties:

It is simple; it has no loops, variables, or mutable state.

It is thread safe; no locking is needed.

It is parallelizable; you could farm out individual steps to multiple threads
without changing the code for each step.

It is generic; compositions could be a plain set, XML or a database result set.

Contrast functional programs with imperative programs, where explicit statements
alter program state. Most object-oriented programs are written in an imperative style
and have none of the advantages listed here; they are unnecessarily complex, not
thread safe, not parallelizable, and difficult to generalize. (For a head-to-head
comparison of functional and imperative styles, skip forward to Where’s My for

Loop?.)

People have known about the advantages of functional languages for a while now. And
yet, pure functional languages like Haskell have not taken over the world, because
developers find that not everything fits easily into the pure functional view.

There are four reasons that Clojure can attract more interest now than functional
languages have in the past:

Functional programming is more urgent today than ever before. Massively
multicore hardware is here, and functional languages provide a clear approach for
taking advantage of it. Functional programming is covered in Chapter 4,
Functional Programming.

Purely functional languages can make it awkward to model state that really needs
to change. Clojure provides a structured mechanism for working with changeable
state via software transactional memory and refs (here), agents (here), atoms
(here), and dynamic binding (here).

Many functional languages are statically typed. Clojure’s dynamic typing makes
it more accessible for programmers learning FP. However, Clojure provides specs
to describe your data and functions, for use as you need it, with greater
expressivity than most static type systems.

Clojure’s Java invocation approach is not functional. When you call Java, you
enter the familiar, mutable world. This offers a comfortable haven for beginners
learning functional programming and a pragmatic alternative to functional style
when you need it. Java invocation is covered in Chapter 10, Java Interop.

Clojure’s approach to changing state enables concurrency without explicit locking and
complements Clojure’s functional core.

Clojure Simplifies Concurrent Programming
Clojure’s support for functional programming makes it easy to write thread-safe code.
Since immutable data structures cannot ever change, there’s no danger of data
corruption based on another thread’s activity.

However, Clojure’s support for concurrency goes beyond just functional
programming. When you need references to mutable data, Clojure protects them via
software transactional memory (STM). STM is a higher-level approach to thread
safety than the locking mechanisms that Java provides. Rather than create fragile,

error-prone locking strategies, you can protect shared state with transactions. This is
much more productive, because many programmers have a good understanding of
transactions based on experience with databases.

For example, the following code creates a working, thread-safe, in-memory database
of accounts:

 (def accounts (ref #{}))
 (defrecord Account [id balance])

The ref function creates a transactionally protected reference to the current state of the
database. Updating is trivial. This code adds a new account to the database:

 (dosync
 (alter accounts conj (->Account "CLJ" 1000.00)))

The dosync causes the update to accounts to execute inside a transaction. This
guarantees thread safety, and it’s easier to use than locking. With transactions, you
never have to worry about which objects to lock or in what order. The transactional
approach will also perform better under some common usage scenarios, because
readers will never block, for example.

Although the example here is trivial, the technique is general, and it works on real-
world problems. See Chapter 6, State and Concurrency for more on concurrency and
STM in Clojure.

Clojure Embraces the Java Virtual Machine
Clojure gives you clean, simple, direct access to Java. You can call any Java API
directly:

 (System/getProperties)
 -> {java.runtime.name=Java(TM) SE Runtime Environment
 ... many more ...

Clojure adds a lot of syntactic sugar for calling Java. We won’t get into the details here
(see Calling Java), but notice that in the following code, the Clojure version has fewer
parentheses than the Java version:

 // Java
 "hello".getClass().getProtectionDomain()

 ; Clojure
 (.. "hello" getClass getProtectionDomain)

Clojure provides simple functions for implementing Java interfaces and subclassing
Java classes. Also, all Clojure functions implement Callable and Runnable. This
makes it trivial to pass the following anonymous function to the constructor for a Java
Thread.

 (.start (new Thread (fn [] (println "Hello" (Thread/currentThread)))))
 -> Hello #object[java.lang.Thread 0x2057ff1f Thread[Thread-0,5,main]]

The funny output here is Clojure’s way of printing a Java instance. java.lang.Thread is
the class name of the instance, 0x2057ff1f is the hash code of the instance, and
Thread[Thread-0,5,main] is the instance’s toString representation.

(Note that in the preceding example, the new thread will run to completion, but its
output may interleave in some strange way with the REPL prompt. This is not a
problem with Clojure but simply the result of having more than one thread writing to
an output stream.)

Because the Java invocation syntax in Clojure is clean and simple, it’s idiomatic to use
Java directly, rather than to hide Java behind Lispy wrappers.

Now that you’ve seen a few of the reasons to use Clojure, it’s time to start writing
some code.

Clojure Coding Quick Start
Clojure is built and distributed in a Java archive (a jar file) that can be run on the Java
Virtual Machine (JVM). Running programs on the Java Virtual Machine requires
assembling a classpath that contains all of the code required to run your program,
which includes Clojure itself, your code, and any Java or Clojure dependencies needed
by your code.

To run Clojure and the code in this book, you need two things:

A Java runtime. Download[8] and install Java version 6 or higher (however, using
at least version 8 is recommended for improved performance).

Clojure command line tools. The Clojure “Getting Started” page[9] contains the
latest instructions on installing the Clojure command line tools. These tools have
support for managing library dependencies and running programs with the
appropriate classpath.

You will use the command line tools (specifically clj) to install Clojure and all of the
dependencies for the sample code in this book. For more details on basic usage of clj,
see the guide[10] and reference[11] pages. Don’t worry about learning everything now,
though, because this book will guide you through the commands necessary to follow
along.

While you’re working through the book, use the version of Clojure tied to the book’s
sample code. See Downloading Sample Code for instructions on downloading the
sample code.

You can test your install by navigating to the directory where you placed the sample
code and running a Clojure read-eval-print loop (REPL) using the clj tool:

 clj

The clj tool uses an optional configuration file, deps.edn, to declare dependencies.
When clj starts, it will download any necessary dependencies (and their transitive
dependencies). If you have just installed the clj tool, you may see statements about
Clojure and other dependencies being downloaded. Once the REPL starts, it prints
some helpful version information, then prompts you with:

 user=>

Now you are ready for “Hello World.”

Using the REPL
To see how to use the REPL, let’s create a few variants of “Hello World.” First, type
(println "hello world") at the REPL prompt:

 user=> (println "hello world")
 -> hello world
 -> nil

The second line, hello world, is the console output you requested. The third line is the
return value from the println expression.

Next, encapsulate your “Hello World” into a function that can address a person by
name:

 (defn hello [name] (str "Hello, " name))
 -> #'user/hello

Let’s break this down:

defn defines a function.

hello is the function name.

hello takes one argument, name.

str is a function call that concatenates an arbitrary list of arguments into a string.

defn, hello, name, and str are all symbols, which are names that refer to things.
Legal symbols are defined in Symbols .

Look at the return value, #’user/hello. The prefix #’ indicates that the function was
stored in a Clojure var, and user is the namespace of the function. (The user
namespace is the REPL default, like the default package in Java.) You don’t need to
worry about vars and namespaces yet; they’re covered in Vars, Bindings, and
Namespaces .

Now you can call hello, passing in your name:

 user=> (hello "Stu")
 -> "Hello, Stu"

If you get your REPL into a state that confuses you, the simplest fix is to kill the REPL
with Ctrl + C on Windows or Ctrl + D on *nix and then start another one.

Special Variables
The REPL includes several useful, special variables. When you’re working in the
REPL, the results of evaluating the three most recent expressions are stored in the
special variables *1, *2, and *3, respectively. This makes it easy to work iteratively.
Say hello to a few different names:

 user=> (hello "Stu")
 -> "Hello, Stu"

 user=> (hello "Clojure")
 -> "Hello, Clojure"

You can use the special variables to combine the results of your recent work:

 (str *1 " and " *2)
 -> "Hello, Clojure and Hello, Stu"

If you make a mistake in the REPL, you’ll see a Java exception. The details are often
omitted for brevity. For example, dividing by zero is a no-no:

 user=> (/ 1 0)
 -> ArithmeticException Divide by zero clojure.lang.Numbers.divide

(Numbers.java:158)

Here the problem is obvious, but sometimes the problem is more subtle and you want
the detailed stack trace. The *e special variable holds the last exception. Because
Clojure exceptions are Java exceptions, you can ask for the stack trace by calling pst
(print stack trace).

 user=> (pst)
 -> ArithmeticException Divide by zero
 | clojure.lang.Numbers.divide (Numbers.java:158)
 | clojure.lang.Numbers.divide (Numbers.java:3808)
 | user/eval1247 (form-init5722005119880062985.clj:1)
 | user/eval1247 (form-init5722005119880062985.clj:1)
 | clojure.lang.Compiler.eval (Compiler.java:6927)
 | clojure.lang.Compiler.eval (Compiler.java:6890)
 | clojure.core/eval (core.clj:3105)
 | clojure.core/eval (core.clj:3101)
 | clojure.main/repl/read-eval-print--7408/fn--7411 (main.clj:240)

| clojure.main/repl/read-eval-print--7408 (main.clj:240)
 | clojure.main/repl/fn--7417 (main.clj:258)
 | clojure.main/repl (main.clj:258)

Java interop is covered in Chapter 10, Java Interop.

If you have a block of code that’s too large to conveniently type at the REPL, save the
code into a file, and then load that file from the REPL. You can use an absolute path or
a path relative to where you launched the REPL:

 ; save some work in temp.clj, and then ...
 user=> (load-file "temp.clj")

The REPL is a terrific environment for trying ideas and getting immediate feedback.
Keep a REPL open at all times while you read this book.

Adding Shared State
The hello function of the previous section is pure; that is, it has no side effects. Pure
functions are easy to develop, test, and understand, and you should prefer them for
many tasks.

That said, most programs have some shared state and will use impure functions to
manage that shared state. Let’s extend hello to keep track of past visitors. First, you
need a data structure to track the visitors. A set will do the trick:

 #{}
 -> #{}

The #{} is a literal for an empty set. Next, you need conj:

 (conj coll item)

conj is short for conjoin, and it builds a new collection with an item added. conj an
element onto a set to see that a new set is created:

 (conj #{} "Stu")
 -> #{"Stu"}

Now that you can build new sets, you need some way to keep track of the current set
of visitors. Clojure provides several reference types (refs) for this purpose. The most
basic reference type is the atom:

 (atom initial-state)

To name your atom, you can use def:

 (def symbol initial-value?)

def is like defn but more general. A def can define functions or data. Use atom to
create an atom, and use def to bind the atom to the name visitors:

 (def visitors (atom #{}))
 -> #'user/visitors

To update a reference, you must use a function, such as swap!:

 (swap! r update-fn & args)

swap! applies an update-fn to reference r, with optional args if necessary. Try to
swap! a visitor into visitors, using conj as the update function:

 (swap! visitors conj "Stu")
 -> #{"Stu"}

atom is one of several reference types in Clojure. Choosing the appropriate reference
type requires care (discussed in Chapter 6, State and Concurrency).

At any time, you can peek inside the ref with deref or with the shorter @:

 (deref visitors)
 -> #{"Stu"}

 @visitors
 -> #{"Stu"}

Now you’re ready to build the new, more elaborate version of hello:

src/examples/introduction.clj

 (defn hello
 "Writes hello message to *out*. Calls you by username.
 Knows if you have been here before."
 [username]
 (swap! visitors conj username)
 (str "Hello, " username))

Next, check that visitors are correctly tracked in memory:

 (hello "Rich")
 -> "Hello, Rich"

http://media.pragprog.com/titles/shcloj3/code/src/examples/introduction.clj

 @visitors
 -> #{"Aaron" "Stu" "Rich"}

In all probability, your visitors list is different from the one shown here. That’s the
problem with state! Your results will vary, depending on when things happened. You
can reason about a function with direct local knowledge. Reasoning about state
requires a full understanding of history.

Avoid state where possible. But when you need it, make it sane and manageable by
using refs such as atoms. Atoms (and all other Clojure reference types) are safe for
multiple threads and processors. Better yet, this safety comes without any need for
locks, which are notoriously tricky to use.

At this point, you should feel comfortable entering small bits of code at the REPL.
Larger units of code aren’t that different; you can load and run Clojure libraries from
the REPL as well. Let’s explore that next.

Navigating Clojure Libraries
Clojure code is packaged in libraries. Each Clojure library belongs to a namespace,
which is analogous to a Java package. You can load a Clojure library with require:

 (require quoted-namespace-symbol)

When you require a library named clojure.java.io, Clojure looks for a file named
clojure/java/io.clj on the CLASSPATH. Try it:

 user=> (require 'clojure.java.io)
 -> nil

The leading single quote (’) is required, and it quotes the library name. The nil returned
indicates success. While you’re at it, test that you can load the sample code for this
chapter, examples.introduction:

 user=> (require 'examples.introduction)
 -> nil

The examples.introduction library includes an implementation of the Fibonacci
numbers, which is the traditional “Hello World” program for functional languages.
We’ll explore the Fibonacci numbers in more detail in How to Be Lazy. For now, just
make sure you can execute the sample function fibs. Enter the following line of code
at the REPL to take the first 10 Fibonacci numbers:

 (take 10 examples.introduction/fibs)
 -> (0 1 1 2 3 5 8 13 21 34)

If you see the first 10 Fibonacci numbers as listed here, you have successfully installed
the book samples.

The book samples are all unit tested, with tests located in the examples/test directory.
The tests for the samples themselves are not explicitly covered in the book, but you
may find them useful for reference.

Often you can find the documentation you need right at the REPL. The most basic
helper function (a macro) is doc:

 (doc name)

Use doc to print the documentation for str:

 user=> (doc str)

 clojure.core/str
 ([] [x] [x & ys])
 With no args, returns the empty string. With one arg x, returns
 x.toString(). (str nil) returns the empty string. With more than
 one arg, returns the concatenation of the str values of the args.

The first line of doc’s output contains the fully qualified name of the function. The
next line contains the possible argument lists, generated directly from the code. (Some
common argument names and their uses are explained in Conventions for Parameter
Names .) Finally, the remaining lines contain the function’s doc string, if the function
definition included one.

You can add a doc string to your own functions by placing it immediately after the
function name:

src/examples/introduction.clj

 (defn hello
 "Writes hello message to *out*. Calls you by username"
 [username]
 (println (str "Hello, " username)))

Sometimes you won’t know the exact name you want documentation for. The find-doc
function will search for anything whose doc output matches a regular expression or
string you pass in:

 (find-doc s)

Use find-doc to explore how Clojure does reduce:

 user=> (find-doc "reduce")

 clojure.core/areduce
 ([a idx ret init expr])
 Macro
 ... details elided ...

 clojure.core/reduce
 ([f coll] [f val coll])
 ... details elided ...

reduce reduces Clojure collections and is covered in Transforming

http://media.pragprog.com/titles/shcloj3/code/src/examples/introduction.clj

Sequences . areduce is for interoperation with Java arrays and is covered in Using Java
Arrays .

Much of Clojure is written in Clojure, and it is instructive to read the source code. You
can view the source of a Clojure function using the repl library.

 (clojure.repl/source a-symbol)

Try viewing the source of the simple identity function:

 (require '[clojure.repl :refer [source]])
 (source identity)

 -> (defn identity
 "Returns its argument."
 {:added "1.0"
 :static true}
 [x] x)

Of course, you can also use Java’s Reflection API. You can use methods, such as
class, ancestors, and instance?, to reflect against the underlying Java object model
and tell, for example, that Clojure’s collections are also Java collections:

 (instance? java.util.Collection [1 2 3])
 -> true

Clojure’s complete API is documented at https://clojure.github.io/clojure. The right
sidebar links to all functions and macros by name, and you can find a helpful grouping
of functions in the Clojure Cheatsheet.[12]

Conventions for Parameter Names
The documentation strings for reduce and areduce show several terse parameter names.
Here are some parameter names and how they are normally used:

Parameter Usage | Parameter Usage | Parameter Usage
a A Java

array
| agt An

agent
| coll A

collection
expr An

expression
| f A

function
| idx An index

r A ref | v A
vector

| val A value

https://clojure.github.io/clojure

These names may seem a little terse, but there’s a good reason for them: the “good names”
are often taken by Clojure functions! Naming a parameter that collides with a function
name is legal but considered bad style: the parameter will shadow the function, which will
be unavailable while the parameter is in scope. So, don’t call your refs ref, your agents
agent, or your counts count. Those names refer to functions.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Wrapping Up
You have just experienced the whirlwind tour of Clojure. You’ve seen Clojure’s
expressive syntax, learned about Clojure’s approach to Lisp, and seen how easy it is to
call Java code from Clojure.

You have Clojure running in your own environment, and you’ve written short
programs at the REPL to demonstrate functional programming and the reference
model for dealing with state. Now it’s time to explore the entire language.

Footnotes

https://github.com/apache/commons-
lang/blob/master/src/main/java/org/apache/commons/lang3/StringUtils.java

http://en.wikipedia.org/wiki/Homoiconicity

http://www.paulgraham.com/icad.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html

https://clojure.org/guides/getting_started

https://clojure.org/guides/deps_and_cli

https://clojure.org/reference/deps_and_cli

https://clojure.org/api/cheatsheet

Copyright © 2018, The Pragmatic Bookshelf.

https://github.com/apache/commons-lang/blob/master/src/main/java/org/apache/commons/lang3/StringUtils.java
http://en.wikipedia.org/wiki/Homoiconicity
http://www.paulgraham.com/icad.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://clojure.org/guides/getting_started
https://clojure.org/guides/deps_and_cli
https://clojure.org/reference/deps_and_cli
https://clojure.org/api/cheatsheet

Chapter 2

Exploring Clojure

Clojure offers great power through functional style, concurrency support, and clean
Java interop. But before you can appreciate all these features, you have to start with
the language basics. Clojure is very expressive, and this chapter covers many concepts
quite quickly. Don’t worry if you don’t understand every detail; we’ll revisit these
topics in more detail in later chapters. If possible, bring up a REPL and follow along
with the examples as you read.

We’ll start by looking at how to read and understand Clojure code, introducing the key
parts of Clojure syntax. If your background is primarily in imperative languages, this
tour may seem to be missing key language constructs, such as variables and for loops.
Don’t worry, you’ll soon learn how to work in new ways that don’t require them.

Reading Clojure
In this section, we’ll cover many of the key parts of Clojure syntax and how they’re
used to form Clojure programs. In Clojure, there are no statements, only expressions
that can be nested in mostly arbitrary ways. When evaluated, every expression returns
a value that’s used in the parent expression. This is a simple model, yet sufficient to
cover everything in Clojure.

Numbers
To begin our exploration, let’s consider a simple arithmetic expression as expressed in
Clojure:

 (+ 2 3)
 -> 5

All Clojure code is made up of expressions, and every expression, when evaluated,
returns a value. In Clojure, parentheses are used to indicate a list, in this example, a list
containing the symbol + and the numbers 2 and 3.

Clojure’s runtime evaluates lists as function calls. The first element (+ in this example)
is always treated as the operation with the remaining elements treated as arguments.
The style of placing the function first is called prefix notation, as opposed to the more
familiar infix notation, 2 + 3.

A practical advantage of prefix notation is that you can easily extend it for arbitrary
numbers of arguments:

 (+ 1 2 3 4)
 -> 10

Even the degenerate case of no arguments works as you’d expect, returning zero. This
helps to eliminate special-case logic for boundary conditions:

 (+)
 -> 0

Many mathematical and comparison operators have the names and semantics that
you’d expect from other programming languages. Addition, subtraction,
multiplication, comparison, and equality all work as you would expect:

 (- 10 5)

 -> 5

 (* 3 10 10)
 -> 300

 (> 5 2)
 -> true

 (>= 5 5)
 -> true

 (< 5 2)
 -> false

 (= 5 2)
 -> false

Division may surprise you:

 (/ 22 7)
 -> 22/7

As you can see, Clojure has a built-in ratio type.

If what you actually want is decimal division, use a floating-point literal for the
dividend:

 (/ 22.0 7)
 -> 3.142857142857143

If you want to stick to integers, you can get the integer quotient and remainder with
quot and rem:

 (quot 22 7)
 -> 3

 (rem 22 7)
 -> 1

If you need to do arbitrary-precision, floating-point math, append M to a number to
create a BigDecimal literal:

 (+ 1 (/ 0.00001 1000000000000000000))
 -> 1.0

 (+ 1 (/ 0.00001M 1000000000000000000))

 -> 1.00000000000000000000001M

For arbitrary-precision integers, you can append N to create a BigInt literal:

 (* 1000N 1000 1000 1000 1000 1000 1000)
 -> 1000000000000000000000N

Notice that only one BigInt literal is needed and is contagious to the entire calculation.

Next, let’s see how we can group values using Clojure collections.

Symbols
Forms such as +, concat, and java.lang.String are called symbols and are used to name
things. For example, + names the function that adds things together. Symbols name all
sorts of things in Clojure:

Functions like str and concat
“Operators” like + and -, which are, after all, just functions
Java classes like java.lang.String and java.util.Random
Namespaces like clojure.core and Java packages like java.lang

Symbols cannot start with a number but can consist of alphanumeric characters, as
well as +, -, *, /, !, ?, ., _, and ’. The list of legal symbol characters is a minimum set
that Clojure promises to support. You should stick to these characters in your own
code, but do not assume the list is exhaustive. Clojure can use other, undocumented
characters in symbols that it employs internally and may add more legal symbol
characters in the future. See Clojure’s online documentation[13] for updates to the list
of legal symbol characters.

Clojure treats / and . specially in order to support namespaces; see Namespaces for
details.

Collections
Clojure provides four primary collection types—lists, vectors, sets, and maps. All
Clojure collections are heterogeneous (can hold any type of data) and are compared for
equality based on their contents. The four Clojure collection types are used in
combination to create larger composite data structures.

First let’s consider vectors, which are sequential, indexed collections. We can create a
vector of the numbers 1, 2, and 3 using the following:

 [1 2 3]

 -> [1 2 3]

Lists are sequential collections stored as a linked list. A list is printed as (1 2 3), but we
can’t create a literal list at the REPL like we can with vectors. As we discussed in the
previous section, Clojure function calls are represented as lists and evaluated by
invoking the first element as the function. Thus (1 2 3) would be interpreted as
invoking the function 1 with the arguments 2 and 3.

If we want a list to be read and interpreted as data (not evaluated like a function call),
we can use the quote special form:

 (quote (1 2 3))
 -> (1 2 3)

Quoting also has a reader macro form (’) understood by the reader. Reader macros are
abbreviations of longer list forms and are used as shortcuts to improve readability.
We’ll see more of these as we explore. Here’s how the quote looks in the shorter
form:

 '(1 2 3)
 -> (1 2 3)

Sets are unordered collections that do not contain duplicates:

 #{1 2 3 5}
 -> #{1 3 2 5}

Because sets are unordered, you may see the elements printed in a different order than
the original literal, and you should not expect any particular order. Sets are a good
choice when you want fast addition and removal of elements and the ability to quickly
check for whether a set contains a value.

Finally, Clojure maps are collections of key/value pairs. You can use a map literal to
create a lookup table for the inventors of programming languages:

 {"Lisp" "McCarthy" "Clojure" "Hickey"}
 -> {"Lisp" "McCarthy", "Clojure" "Hickey"}

The key "Lisp" is associated with the value "McCarthy" and the key "Clojure" is
associated with the value "Hickey". Like sets, maps are unordered, and the key/value
pairs may be printed in an order different than the original map literal.

You may have noticed that the printed version lists a comma between the two
key/value pairs. In Clojure, commas are whitespace and you’re free to use them as an

optional delimiter if you find it improves readability:

 {"Lisp" "McCarthy", "Clojure" "Hickey"}
 -> {"Lisp" "McCarthy", "Clojure" "Hickey"}

Any Clojure data structure can be a key in a map. However, the most common key
type is the Clojure keyword.

A keyword is like a symbol, except that keywords begin with a colon (:). Keywords
resolve to themselves:

 :foo
 -> :foo

The fact that keywords resolve to themselves makes keywords useful as keys. You
could redefine the inventors map using keywords as keys: {:Lisp "McCarthy" :Clojure
"Hickey"}

If several maps have keys in common, you can leverage this by creating a record with
defrecord:

 (defrecord name [arguments])

For example, consider using the defrecord to create a Book record:

 (defrecord Book [title author])
 -> user.Book

Then, you can instantiate that record with the ->Book constructor function:

 (->Book "title" "author")

Once you instantiate a Book, it behaves almost like any other map. We will learn more
about when and how to use records in Chapter 7, Protocols and Datatypes .

Strings and Characters
Strings are another kind of form. They are delimited by double quotes and are allowed
to span multiple lines. Clojure strings reuse the Java String implementation.

 "This is a\nmultiline string"
 -> "This is a\nmultiline string"

 "This is also
 a multiline string"

 -> "This is also\na multiline string"

As you can see, the REPL always shows string literals with escaped newlines. If you
actually print a multiline string, it will print on multiple lines:

 (println "another\nmultiline\nstring")
 | another
 | multiline
 | string
 -> nil

Perhaps the most common string function you’ll use is str, which takes any number of
objects, converts them to strings, and concatenates the results into a single string. Any
nils passed to str are ignored:

 (str 1 2 nil 3)
 -> "123"

Clojure characters are also Java characters. Their literal syntax is \{letter}, where
letter can be a letter, or in a few special cases, the name of a character: backspace,
formfeed, newline, return, space, or tab:

 (str \h \e \y \space \y \o \u)
 -> "hey you"

Booleans and nil
Clojure’s rules for Booleans are easy to understand:

true is true, and false is false.
In addition to false, nil evaluates to false when used in a Boolean context.
Other than false and nil, everything else evaluates to true in a Boolean context.

Note that true, false, and nil follow the rules for symbols but are read as other special
values (either a Boolean or nil). These are the only special-case tokens like this in
Clojure—anything else symbol-like is read as a symbol.

The empty list is not false in Clojure:

 ; (if part) (else part)
 (if () "() is true" "() is false")
 -> "() is true"

Zero is not false in Clojure, either:

 ; (if part) (else part)
 (if 0 "Zero is true" "Zero is false")
 -> "Zero is true"

A predicate is a function that returns either true or false. In Clojure, it’s common to
name predicates with a trailing question mark, for example, true?, false?, nil?, and
zero?:

 (true? expr)
 (false? expr)
 (nil? expr)
 (zero? expr)

true? tests whether a value is exactly the true value, not whether the value evaluates to
true in a Boolean context. The only thing that’s true? is true itself:

 (true? true)
 -> true

 (true? "foo")
 -> false

nil? and false? work the same way. Only nil is nil?, and only false is false?.

zero? works with any numeric type, returning true if it’s zero:

 (zero? 0.0)
 -> true

 (zero? (/ 22 7))
 -> false

There are many more predicates in Clojure—go to the REPL and type:

 (find-doc #"\?$")

The find-doc function is a REPL facility (included in the clojure.repl namespace) that
searches all docstrings matching either a string or a regular expression. The syntax
used here #"\?$" is a literal regular expression. Clojure uses Java’s built-in regular
expression library and is equivalent to a compiled Java Pattern. Clojure provides a set
of functions designed for using regular expressions to find and/or replace matches in a
string.

Functions
In Clojure, a function call is simply a list whose first element resolves to a function.
For example, this call to str concatenates its arguments to create a string:

 (str "hello" " " "world")
 -> "hello world"

Function names are typically hyphenated, as in clear-agent-errors. If a function is a
predicate, then by convention, its name should end with a question mark. As an
example, the following predicates test the type of their argument, and all end with a
question mark:

 (string? "hello")
 -> true

 (keyword? :hello)
 -> true

 (symbol? 'hello)
 -> true

To define your own functions, use defn:

 (defn name doc-string? attr-map? [params*] prepost-map? body)

The name is a symbol naming the function (implicitly defined within the current
namespace). The doc-string is an optional string describing the function. The attr-map
associates metadata with the function’s var. It’s covered separately in Metadata. The
prepost-map? can be used to define preconditions and postconditions that are
automatically checked on invocation, and the body contains any number of
expressions. The result of the final expression is the return value of the function.

Let’s create a greeting function that takes a name and returns a greeting preceded by
"Hello":

src/examples/exploring.clj

 (defn greeting
 "Returns a greeting of the form 'Hello, username.'"
 [username]
 (str "Hello, " username))

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

You can call greeting:

 (greeting "world")
 -> "Hello, world"

You can also consult the documentation for greeting:

 user=> (doc greeting)

 exploring/greeting
 ([username])
 Returns a greeting of the form 'Hello, username.'

What does greeting do if the caller omits username?

 (greeting)
 -> ArityException Wrong number of args (0) passed to: user/greeting
 clojure.lang.AFn.throwArity (AFn.java:429)

Clojure functions enforce their arity, that is, their expected number of arguments. If
you call a function with an incorrect number of arguments, Clojure throws an
ArityException. If you want to make greeting issue a generic greeting when the caller
omits username, you can use this alternate form of defn, which takes multiple
argument lists and method bodies:

 (defn name doc-string? attr-map?
 ([params*] body)+)

Different arities of the same function can call one another, so you can easily create a
zero-argument greeting that delegates to the one-argument greeting, passing in a
default username:

src/examples/exploring.clj

 (defn greeting
 "Returns a greeting of the form 'Hello, username.'
 Default username is 'world'."
 ([] (greeting "world"))
 ([username] (str "Hello, " username)))

You can verify that the new greeting works as expected:

 (greeting)
 -> "Hello, world"

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

You can create a function with variable arity by including an ampersand in the
parameter list. Clojure binds the name after the ampersand to a sequence of all the
remaining parameters. There may be only one variable arity parameter, and it must be
last in the parameter list.

The following function allows two people to go on a date with a variable number of
chaperones:

src/examples/exploring.clj

 (defn date [person-1 person-2 & chaperones]
 (println person-1 "and" person-2
 "went out with" (count chaperones) "chaperones."))

 (date "Romeo" "Juliet" "Friar Lawrence" "Nurse")
 | Romeo and Juliet went out with 2 chaperones.

Writing function implementations differing by arity is useful. But if you come from an
object-oriented background, you’ll want polymorphism, that is, different
implementations that are selected by type. Clojure can do this and a whole lot more.
See Chapter 9, Multimethods and Chapter 7, Protocols and Datatypes for details.

defn is intended for defining functions at the top level. If you want to create a function
from within another function, you should use an anonymous function form instead.

Anonymous Functions
In addition to named functions with defn, you can also create anonymous functions
with fn. At least three reasons exist to create an anonymous function:

The function is so brief and self-explanatory that giving it a name makes the code
harder to read, not easier.

The function is being used only from inside another function and needs a local
name, not a top-level binding.

The function is created inside another function for the purpose of capturing the
values of parameters or local bindings.

Functions used as predicates when filtering data are often brief and self-explanatory.
For example, imagine that you want to create an index for a sequence of words, and
you don’t care about words shorter than three characters. You can write an indexable-
word? function like this:

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

src/examples/exploring.clj

 (defn indexable-word? [word]
 (> (count word) 2))

Then, you can use indexable-word? to extract indexable words from a sentence:

 (require '[clojure.string :as str])
 (filter indexable-word? (str/split "A fine day it is" #"\W+"))
 -> ("fine" "day")

The call to split breaks the sentence into words, and then filter calls indexable-word?
once for each word, returning those for which indexable-word? returns true.

Anonymous functions let you do the same thing in a single line. The simplest
anonymous fn form is the following:

 (fn [params*] body)

With this form, you can plug the implementation of indexable-word? directly into the
call to filter:

 (filter (fn [w] (> (count w) 2)) (str/split "A fine day" #"\W+"))
 -> ("fine" "day")

There’s an even shorter reader macro syntax for anonymous functions, using implicit
parameter names. The parameters are named %1, %2, and optionally, a final %& to
collect the rest of a variable number of arguments. You can also use just % for the first
parameter, preferred for single-argument functions. This syntax looks like this:

 #(body)

You can rewrite the call to filter with the shorter anonymous form:

 (filter #(> (count %) 2) (str/split "A fine day it is" #"\W+"))
 -> ("fine" "day")

A second motivation for anonymous functions is when you want to use a named
function but only inside the scope of another function. Continuing with the indexable-
word? example, you could write this:

src/examples/exploring.clj

 (defn indexable-words [text]
 (let [indexable-word? (fn [w] (> (count w) 2))]

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

 (filter indexable-word? (str/split text #"\W+"))))

The let binds the name indexable-word? to the same anonymous function you wrote
earlier, this time inside the lexical scope of indexable-words. (let is covered in more
detail under Vars, Bindings, and Namespaces .) You can verify that indexable-words
works as expected:

 (indexable-words "a fine day it is")
 -> ("fine" "day")

The combination of let and an anonymous function says the following to readers of
your code: “The function indexable-word? is interesting enough to have a name but is
relevant only inside indexable-words.”

A third reason to use anonymous functions is when you create a function dynamically
at runtime. Earlier, you implemented a simple greeting function. Extending this idea,
you can create a make-greeter function that creates greeting functions. make-greeter
will take a greeting-prefix and return a new function that composes greetings from the
greeting-prefix and a name.

src/examples/exploring.clj

 (defn make-greeter [greeting-prefix]
 (fn [username] (str greeting-prefix ", " username)))

It makes no sense to name the fn, because it’s creating a different function each time
make-greeter is called. However, you may want to name the results of specific calls
to make-greeter. You can use def to name functions created by make-greeter:

 (def hello-greeting (make-greeter "Hello"))
 -> #'user/hello-greeting

 (def aloha-greeting (make-greeter "Aloha"))
 -> #'user/aloha-greeting

Now, you can call these functions, just like any other functions:

 (hello-greeting "world")
 -> "Hello, world"

 (aloha-greeting "world")
 -> "Aloha, world"

Moreover, there’s no need to give each greeter a name. You can simply create a

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

greeter and place it in the first (function) slot of a form:

 ((make-greeter "Howdy") "pardner")
 -> "Howdy, pardner"

As you can see, the different greeter functions remember the value of greeting-prefix
at the time they were created. More formally, the greeter functions are closures over
the value of greeting-prefix.

When to Use Anonymous Functions
Anonymous functions have a terse syntax—sometimes too terse. You may actually
prefer to be explicit, creating named functions such as indexable-word?. That’s
perfectly fine and will certainly be the right choice if indexable-word? needs to be
called from more than one place.

Anonymous functions are an option, not a requirement. Use the anonymous forms only
when you find that they make your code more readable. They take a little getting used
to, so don’t be surprised if you gradually use them more and more.

Vars, Bindings, and Namespaces
One of the most important tools in a programming language is the ability to name and
remember values or functions for later use. In Clojure, a namespace is a collection of
names (symbols) that refer to vars. Each var is bound to a value. Let’s consider vars
more closely.

Vars
When you define an object with def or defn, that object is stored in a Clojure var. For
example, the following def creates a var named user/foo:

 (def foo 10)
 -> #'user/foo

The symbol user/foo refers to a var that is bound to the value 10. If you ask Clojure to
evaluate the symbol foo, it will return the value of the associated var:

 foo
 -> 10

The initial value of a var is called its root binding. Sometimes it’s useful to have
thread-local bindings for a var; this is covered in Managing Per-Thread State with
Vars .

You can refer to a var directly. The var special form returns a var itself, not the var’s
value:

 (var a-symbol)

You can use var to return the var bound to user/foo:

 (var foo)
 -> #'user/foo

You will almost never see the var form directly in Clojure code. Instead, you’ll see the
equivalent reader macro #’, which also returns the var for a symbol:

 #'foo
 -> #'user/foo

Why would you want to refer to a var directly? Most of the time, you won’t, and you
can often simply ignore the distinction between symbols and vars.

But keep in the back of your mind that vars have many abilities other than just storing
a value:

The same var can be aliased into more than one namespace (Namespaces). This
allows you to use convenient short names.

Vars can have metadata (Metadata). Var metadata includes documentation
(Navigating Clojure Libraries), type hints for optimization, and unit tests.

Vars can be dynamically rebound on a per-thread basis (Managing Per-Thread
State with Vars).

Bindings
Vars are bound to names, but there are other kinds of bindings as well. For example, in
a function call, argument values bind to parameter names. In the following call, the
name number is locally bound to the value 10 inside the triple function:

 (defn triple [number] (* 3 number))
 -> #'user/triple

 (triple 10)
 -> 30

A function’s parameter bindings have a lexical scope: they’re visible only inside the
text of the function body. Functions are not the only way to create a lexical binding.
The special form let does nothing other than create a set of lexical bindings:

 (let [bindings*] exprs*)

The bindings are then in effect for exprs, and the value of the let is the value of the
last expression in exprs.

Imagine that you want coordinates for the four corners of a square, given the bottom,
left, and size. You can let the top and right coordinates, based on the values given:

src/examples/exploring.clj

 (defn square-corners [bottom left size]
 (let [top (+ bottom size)
 right (+ left size)]
 [[bottom left] [top left] [top right] [bottom right]]))

The let binds top and right. This saves you the trouble of calculating top and right

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

more than once. (Both are needed twice to generate the return value.) The let then
returns its last form, which in this example becomes the return value of square-
corners.

Destructuring
In many programming languages, you bind a variable to an entire collection when you
need to access only part of the collection.

Imagine that you’re working with a database of book authors. You track both first and
last names, but some functions need to use only the first name:

src/examples/exploring.clj

 (defn greet-author-1 [author]
 (println "Hello," (:first-name author)))

The greet-author-1 function works fine:

 (greet-author-1 {:last-name "Vinge" :first-name "Vernor"})
 | Hello, Vernor

Having to bind author is unsatisfying. You don’t need the author; all you need is the
first-name. Clojure solves this with destructuring. Any place that you bind names, you
can nest a vector or a map in the binding to reach into a collection and bind only the
part you want. Here is a variant of greet-author that binds only the first name:

src/examples/exploring.clj

 (defn greet-author-2 [{fname :first-name}]
 (println "Hello," fname))

The binding form {fname :first-name} tells Clojure to bind fname to the :first-name of
the function argument. greet-author-2 behaves just like greet-author-1:

 (greet-author-2 {:last-name "Vinge" :first-name "Vernor"})
 | Hello, Vernor

Just as you can use a map to destructure any associative collection, you can use a
vector to destructure any sequential collection. For example, you could bind only the
first two coordinates in a three-dimensional coordinate space:

 (let [[x y] [1 2 3]]
 [x y])

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

 -> [1 2]

The expression [x y] destructures the vector [1 2 3], binding x to 1 and y to 2. Since no
symbol lines up with the final element 3, it’s not bound to anything.

Sometimes you want to skip elements at the start of a collection. Here’s how you could
bind only the z coordinate:

 (let [[_ _ z] [1 2 3]]
 z)
 -> 3

The underscore (_) is a legal symbol and is often used to indicate, “I don’t care about
this binding.” Binding proceeds from left to right, so the _ is actually bound twice:

 ; *not* idiomatic!
 (let [[_ _ z] [1 2 3]]
 _)
 -> 2

It’s also possible to simultaneously bind both a collection and elements within the
collection. Inside a destructuring expression, an :as clause gives you a binding for the
entire enclosing structure. For example, you could capture the x and y coordinates
individually, plus the entire collection as coords, to report the total number of
dimensions:

 (let [[x y :as coords] [1 2 3 4 5 6]]
 (str "x: " x ", y: " y ", total dimensions " (count coords)))
 -> "x: 1, y: 2, total dimensions 6"

Try using destructuring to create an ellipsize function. ellipsize should take a string
and return the first three words followed by an ellipsis (...).

src/examples/exploring.clj

 (require '[clojure.string :as str])
 (defn ellipsize [words]
 (let [[w1 w2 w3] (str/split words #"\s+")]
 (str/join " " [w1 w2 w3 "..."])))

 (ellipsize "The quick brown fox jumps over the lazy dog.")
 -> "The quick brown ..."

split splits the string around whitespace, and then the destructuring form [w1 w2 w3]
grabs the first three words. The destructuring ignores any extra items, which is exactly

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

what we want. Finally, join reassembles the three words, adding the ellipsis at the end.

Destructuring has several other features not shown here and is a mini-language in
itself. The Snake game in A Clojure Snake makes heavy use of destructuring. For a
complete list of destructuring options, see the online documentation for binding
forms[14] and the destructuring guide.[15]

Namespaces
Root bindings live in a namespace. You can see evidence of this when you start the
Clojure REPL and create a binding:

 user=> (def foo 10)
 -> #'user/foo

The user=> prompt tells you that you’re currently working in the user namespace.
Most of the REPL session listings in this book omit the REPL prompt for brevity. In
this section, the REPL prompt will be included whenever the current namespace is
important. You should treat user as a scratch namespace for exploratory development.

When Clojure resolves the name foo, it namespace-qualifies foo in the current
namespace user. You can verify this by calling resolve:

 (resolve sym)

resolve returns the var or class that a symbol will resolve to in the current namespace.
Use resolve to explicitly resolve the symbol foo:

 (resolve 'foo)
 -> #'user/foo

You can switch namespaces, creating a new one if needed, with in-ns:

 (in-ns name)

Try creating a myapp namespace:

 user=> (in-ns 'myapp)
 -> #object[clojure.lang.Namespace 0x5b025dc7 "myapp"]
 myapp=>

Now you’re in the myapp namespace, and anything you def or defn will belong to
myapp.

When you create a new namespace with in-ns, the java.lang package is automatically

available to you:

 myapp=> String
 -> java.lang.String

While you’re learning Clojure, you should use the clojure.core namespace whenever
you move to a new namespace, making Clojure’s core functions available in the new
namespace as well:

 myapp=> (clojure.core/use 'clojure.core)
 -> nil

By default, the class names outside java.lang must be fully qualified. You can’t just
say File:

 myapp=> File/separator
 -> java.lang.Exception: No such namespace: File

Instead, you must specify the fully qualified java.io.File. Note that your file separator
character may be different from that shown here:

 myapp=> java.io.File/separator
 -> "/"

If you want to use a short name, rather than a fully qualified class name, you can
import classes from a Java package into the current namespace using import.

 (import '(package Class+))

Once you import a class, you can use its short name:

 (import '(java.io InputStream File))
 -> java.io.File

 (.exists (File. "/tmp"))
 -> true

import is only for Java classes. To use a Clojure var from another namespace without
the namespace qualified, you must refer the external vars into the current namespace.
For example, take Clojure’s split function that resides in clojure.string:

 (require 'clojure.string)
 (clojure.string/split "Something,separated,by,commas" #",")
 -> ["Something" "separated" "by" "commas"]

 (split "Something,separated,by,commas" #",")
 -> Unable to resolve symbol: split in this context

If you wish to refer to split with a namespace alias, call require on split’s namespace
and give it the alias str:

 (require '[clojure.string :as str])
 (str/split "Something,separated,by,commas" #",")
 -> ["Something" "separated" "by" "commas"]

This simple form of require causes the current namespace to reference all public vars
in clojure.string via the alias str.

It’s common to import Java classes and require namespaces at the top of a source file,
using the ns macro:

 (ns name & references)

The ns macro sets the current namespace (available as *ns*) to name, creating the
namespace if necessary. The references can include :import, :require, and :use,
which work like the similarly named functions to set up the namespace mappings in a
single form at the top of a source file. For example, the following call to ns appears at
the top of the sample code for this chapter:

src/examples/exploring.clj

 (ns examples.exploring
 (:require [clojure.string :as str])
 (:import (java.io File)))

The namespace functions can do quite a bit more than we’ve shown here.

You can examine namespaces and add or remove mappings at any time. To find out
more, issue this command at the REPL. Since we’ve moved around a bit in the REPL,
we’ll also ensure that we’re in the user namespace so that our REPL utilities are
available to us:

 (in-ns 'user)
 (find-doc "ns-")

Alternately, browse the reference documentation.[16]

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

Metadata
The Wikipedia entry on metadata[17] begins by saying that metadata is “data about
data.” That is true but not usably specific. In Clojure, metadata is data that is
orthogonal to the logical value of an object. For example, a person’s first and last
names are plain old data. The fact that a person object can be serialized to XML has
nothing to do with the person and is therefore metadata. Likewise, the fact that a
person object is dirty and needs to be flushed to the database is metadata.

The Clojure language itself uses metadata in several places. For example, vars have a
metadata map containing documentation, type information, and source information.
Here is the metadata for the str var:

 (meta #'str)
 {:ns #object[clojure.lang.Namespace 0x62ccf439 "clojure.core"],
 :name str,
 :added "1.0",
 :file "clojure/core.clj",
 :line 544,
 :column 1,
 :tag java.lang.String,
 :arglists ([] [x] [x & ys]),
 :doc
 "With no args, ...[etc]"}

Some common metadata keys and their uses are shown in the following table.

Key Used For Key Used For
:ns Namespace :column Source column number
:name Local name :tag Expected argument or return

type
:added Version this function was

added
:arglists Parameter info used by doc

:file Source file :doc Documentation used by doc

:line Source line number :macro True for macros

Much of the metadata on a var is added automatically by the Clojure compiler. To add
your own key/value pairs to a var, use the metadata reader macro:

^metadata form

For example, you could create a simple shout function that upcases a string and then
document that shout both expects and returns a string, using the :tag key:

 ; see also shorter form below
 (defn ^{:tag String} shout [^{:tag String} s] (clojure.string/upper-case

s))
 -> #'user/shout

You can inspect shout’s metadata to see that Clojure added the :tag:

 (meta #'shout)
 -> {:arglists ([s]),
 :ns #object[clojure.lang.Namespace 0x284c1da6 "user"],
 :name shout,
 :line 32,
 :column 1,
 :file "NO_SOURCE_PATH",
 :tag java.lang.String}

You provided the :tag, and Clojure provided the other keys. The :file value
NO_SOURCE_PATH indicates that the code was entered at the REPL.

Because :tag metadata is so common, you can also use the short-form ^Classname,
which expands to ^{:tag Classname}. Using the shorter form, you can rewrite shout as
follows:

 (defn ^String shout [^String s] (clojure.string/upper-case s))
 -> #'user/shout

If you find the metadata disruptive when you’re reading the definition of a function,
you can place the metadata last. Use a variant of defn that wraps one or more body
forms in parentheses, followed by a metadata map:

 (defn shout
 ([s] (clojure.string/upper-case s))
 {:tag String})

Calling Java
Clojure provides simple, direct syntax for calling Java code: creating objects, invoking
methods, and accessing static methods and fields. In addition, Clojure provides
syntactic sugar that makes calling Java from Clojure more concise than calling Java
from Java!

Not all types in Java are created equal: the primitives and arrays work differently.
Where Java has special cases, Clojure gives you direct access to these as well. Finally,
Clojure provides a set of convenience functions for common tasks that would be
unwieldy in Java.

The first step in many Java interop scenarios is creating a Java object. Clojure provides
the new special form for this purpose:

 (new classname)

Try creating a new Random:

 (new java.util.Random)
 -> #object[java.util.Random 0x30dae81 "java.util.Random@30dae81"]

Another more frequently used shortcut for creating a new instance of a class is to
append a trailing . to the class name:

 (java.util.Random.)
 -> #object[java.util.Random 0x133314b "java.util.Random@133314b"]

The REPL simply prints out the new Random instance indicating its class, hash code,
and the result of calling its toString method. To use a Random instance, you need to
save it away somewhere. For now, simply use def to save the Random into a Clojure
Var:

 (def rnd (new java.util.Random))
 -> #'user/rnd

Now you can call methods on rnd using Clojure’s dot (.) special form:

 (. class-or-instance member-symbol & args)
 (. class-or-instance (member-symbol & args))

The . can call methods. For example, the following code calls the no-argument version
of nextInt:

 (. rnd nextInt)
 -> -791474443

Random also has a nextInt that takes an argument. You can call that version by adding
the argument to the list:

 (. rnd nextInt 10)
 -> 8

The . syntax can also be used to access instance fields, static methods, and static fields:

 ;; Instance field
 (def p (java.awt.Point. 10 20))
 (. p x)
 -> 10

 ;; Static method
 (. System lineSeparator)
 -> "\n"

 ;; Static field
 (. Math PI)
 -> 3.141592653589793

In cases where there are both a method and a field of the same name, the method will
be preferred. The member name can be prefixed with a - to apply only to fields:

 ;; Instance field
 (def p (java.awt.Point. 10 20))
 (. p -x)
 -> 10

 ;; Static field
 (. Math -PI)
 -> 3.141592653589793

However, Clojure also provides a more concise syntax for both instance and static
access that is preferred:

 (.method instance & args)
 (.field instance)
 (.-field instance)
 (Class/method & args)
 Class/field

Rewriting the examples above with the more concise style looks like this:

 (.nextInt rnd 10)
 -> 8

 (.x p) ;; or (.-x p)
 -> 10

 (System/lineSeparator)
 -> "\n"

 Math/PI
 -> 3.141592653589793

Notice in the previous examples that Math is not fully qualified, because Clojure
imports java.lang classes automatically. To avoid typing java.util.Random
everywhere, you can import it:

 (import (package-symbol & class-name-symbols)*)

import takes a variable number of lists, with the first part of each list being a package
name and the rest being names to import from that package. The following import
allows unqualified access to Random, Locale, and MessageFormat:

 (import '(java.util Random Locale)
 '(java.text MessageFormat))
 -> java.text.MessageFormat

 Random
 -> java.util.Random

 Locale
 -> java.util.Locale

 MessageFormat
 -> java.text.MessageFormat

At this point, you have almost everything you need to call Java from Clojure. You can
do the following:

Import class names
Create instances
Access fields
Invoke methods

However, there isn’t anything particularly exciting about the syntax. It’s just “Java
with different parentheses.”

Although reaching into Java from Clojure is easy, remembering how all of the Java
bits underneath work can be daunting. Clojure provides a javadoc function that will
make your life much easier. This provides a pleasant experience from the REPL when
exploring.

 (javadoc java.net.URL)

Comments
There are several ways to create comments in Clojure. The most common is to use ;,
which creates a comment to the end of the line. While everything after the first ; is
ignored, you’ll often see multiple semicolons to make a greater visual impact:

 ;; this is a comment

Clojure also contains a comment macro that ignores its body and returns nil. This is
useful to wrap around a block of existing code. However, because it’s still read by the
Clojure reader, it must be valid code.

 (comment
 (defn ignore-me []
 ;; not done yet
))

One common use of the comment macro is to save a chunk of utility or test code in a
comment block at the end of the file, which is useful in combination with REPL-based
development.

Clojure also contains a reader macro #_ to tell the reader to read the next form but
ignore it.

 (defn triple [number]
 #_(println "debug triple" number)
 (* 3 number))

In this example, the println expression is being read but ignored due to the #_ reader
macro.

At this point, we’ve seen a broad overview of the basics of Clojure syntax. In the next
section, we’ll dive into the constructs that Clojure provides for flow control.

Flow Control
Clojure has very few flow control forms. In this section, you’ll meet if, do, and
loop/recur. As it turns out, this is almost all you’ll ever need. Clojure provides a
library of additional forms, but they’re largely built from these primitives.

Branch with if
Clojure’s if evaluates its first argument. If the argument is logically true, it returns the
result of evaluating its second argument:

src/examples/exploring.clj

 (defn is-small? [number]
 (if (< number 100) "yes"))

 (is-small? 50)
 -> "yes"

If the first argument to if is logically false, it returns nil:

 (is-small? 50000)
 -> nil

If you want to define a result for the “else” part of if, add it as a third argument:

src/examples/exploring.clj

 (defn is-small? [number]
 (if (< number 100) "yes" "no"))

 (is-small? 50000)
 -> "no"

The when and when-not control flow macros are built on top of if and are described in
when and when-not.

Introduce Side Effects with do
Clojure’s if allows only one form for each branch. What if you want to do more than
one thing on a branch? For example, you might want to log that a certain branch was
chosen. do takes any number of forms, evaluates them all, and returns the last.

You can use a do to print a logging statement from within an if:

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

src/examples/exploring.clj

 (defn is-small? [number]
 (if (< number 100)
 "yes"
 (do
 (println "Saw a big number" number)
 "no")))

which results in:

 (is-small? 200)
 | Saw a big number 200
 -> "no"

This is an example of a side effect. The println doesn’t contribute to the return value of
is-small? at all. Instead, it reaches into the world outside the function and actually does
something.

Many programming languages mix pure functions and side effects in a completely ad
hoc fashion. Not Clojure. In Clojure, side effects are explicit and unusual. do is one
way to say “side effects to follow.” Since do ignores the return values of all its forms
except the last, those forms must have side effects to be of any use at all.

Recur with loop/recur
The Swiss Army knife of flow control in Clojure is loop:

 (loop [bindings*] exprs*)

The loop special form works like let, establishing bindings and then evaluating exprs.
The difference is that loop sets a recursion point, which can then be targeted by the
recur special form:

 (recur exprs*)

recur binds new values for loop’s bindings and returns control to the top of the loop.
For example, the following loop/recur returns a countdown:

src/examples/exploring.clj

 (loop [result [] x 5]
 (if (zero? x)
 result
 (recur (conj result x) (dec x))))

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

 -> [5 4 3 2 1]

The first time through, loop binds result to an empty vector and binds x to 5. Since x
is not zero, recur then rebinds the names x and result:

result binds to the previous result conjoined with the previous x.
x binds to the decrement of the previous x.

Control then returns to the top of the loop. Since x is again not zero, the loop
continues, accumulating the result and decrementing x. Eventually, x reaches zero,
and the if terminates the recurrence, returning result.

Instead of using a loop, you can recur back to the top of a function. This makes it
simple to write a function whose entire body acts as an implicit loop:

src/examples/exploring.clj

 (defn countdown [result x]
 (if (zero? x)
 result
 (recur (conj result x) (dec x))))

 (countdown [] 5)
 -> [5 4 3 2 1]

recur is a powerful building block. But you may not use it very often, because many
common recursions are provided by Clojure’s sequence library.

For example, countdown could also be expressed as any of these:

 (into [] (take 5 (iterate dec 5)))
 -> [5 4 3 2 1]

 (into [] (drop-last (reverse (range 6))))
 -> [5 4 3 2 1]

 (vec (reverse (rest (range 6))))
 -> [5 4 3 2 1]

Don’t expect these forms to make sense yet—just be aware that there are often
alternatives to using recur directly. The sequence library functions used here are
described in Using the Sequence Library. Clojure will not perform automatic tail-call
optimization (TCO). However, it will optimize calls to recur. Chapter 4, Functional
Programming defines TCO and explores recursion and TCO in detail.

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

At this point, you’ve seen quite a few language features but still no variables. Some
things really do vary, and Chapter 6, State and Concurrency will show you how
Clojure deals with changeable references. But most variables in traditional languages
are unnecessary and downright dangerous. Let’s see how Clojure gets rid of them.

Where’s My for Loop?
Clojure has no for loop and no direct mutable variables. Clojure provides indirect
mutable references, but these must be explicitly called out in your code. See Chapter 6,
State and Concurrency for details. So how do you write all that code you’re
accustomed to writing with for loops?

Rather than create a hypothetical example, we decided to grab a piece of open source
Java code (sort of) randomly, find a method with some for loops and variables, and
port it to Clojure. We opened the Apache Commons project, which is very widely
used. We selected the StringUtils class in Commons Lang, assuming that such a class
would require little domain knowledge to understand. We then browsed for a method
that had multiple for loops and local variables and found indexOfAny:

data/snippets/StringUtils.java

 // From Apache Commons Lang, http://commons.apache.org/lang/
 public static int indexOfAny(String str, char[] searchChars) {
 if (isEmpty(str) || ArrayUtils.isEmpty(searchChars)) {
 return -1;
 }
 for (int i = 0; i < str.length(); i++) {
 char ch = str.charAt(i);
 for (int j = 0; j < searchChars.length; j++) {
 if (searchChars[j] == ch) {
 return i;
 }
 }
 }
 return -1;
 }

indexOfAny walks str and reports the index of the first char that matches any char in
searchChars, returning -1 if no match is found.

Here are some example results from the documentation for indexOfAny:

 StringUtils.indexOfAny(null, *) = -1
 StringUtils.indexOfAny("", *) = -1
 StringUtils.indexOfAny(*, null) = -1
 StringUtils.indexOfAny(*, []) = -1
 StringUtils.indexOfAny("zzabyycdxx",['z','a']) = 0

http://media.pragprog.com/titles/shcloj3/code/data/snippets/StringUtils.java

 StringUtils.indexOfAny("zzabyycdxx",['b','y']) = 3
 StringUtils.indexOfAny("aba", ['z']) = -1

Two ifs, two fors, three possible points of return, and three mutable local variables are
in indexOfAny, and the method is 14 lines long, as counted by David A. Wheeler’s
SLOCCount.[18]

Now let’s build a Clojure index-of-any, step by step. If we just wanted to find the
matches, we could use a Clojure filter. But we want to find the index of a match. So
we create indexed, a function that takes a collection and returns an indexed collection:

src/examples/exploring.clj

 (defn indexed [coll] (map-indexed vector coll))

indexed returns a sequence of pairs of the form [idx elt]. Try indexing a string:

 (indexed "abcde")
 -> ([0 \a] [1 \b] [2 \c] [3 \d] [4 \e])

Next, we want to find the indices of all the characters in the string that match the
search set.

Create an index-filter function that is similar to Clojure’s filter but that returns the
indices instead of the matches themselves:

src/examples/exploring.clj

 (defn index-filter [pred coll]
 (when pred
 (for [[idx elt] (indexed coll) :when (pred elt)] idx)))

Clojure’s for is not a loop but a sequence comprehension (see Transforming
Sequences). The index/element pairs of (indexed coll) are bound to the names idx and
elt. The comprehension yields the value of idx for each matching pair, for only those
pairs where (pred elt) is true.

Clojure sets are functions that test membership in the set. So you can pass a set of
characters and a string to index-filter and get back the indices of all characters in the
string that belong to the set. Try it with a few different strings and character sets:

 (index-filter #{\a \b} "abcdbbb")
 -> (0 1 4 5 6)

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

 (index-filter #{\a \b} "xyz")
 -> ()

At this point, we’ve accomplished more than the stated objective. index-filter returns
the indices of all the matches, and we need only the first index. So, index-of-any
simply takes the first result from index-filter:

src/examples/exploring.clj

 (defn index-of-any [pred coll]
 (first (index-filter pred coll)))

Test that index-of-any works correctly with a few different inputs:

 (index-of-any #{\z \a} "zzabyycdxx")
 -> 0
 (index-of-any #{\b \y} "zzabyycdxx")
 -> 3

As the following table shows, the Clojure version is simpler than the imperative
version by every metric.

Metric LOC Branches Exits/Method Variables
Imperative version 14 4 3 3
Functional version 6 1 1 0

What accounts for the difference?

The imperative indexOfAny must deal with several special cases: null or empty
strings, a null or empty set of search characters, and the absence of a match.
These special cases add branches and exits to the method. With a functional
approach, most of these kinds of special cases just work without any explicit
code.

The imperative indexOfAny introduces local variables to traverse collections
(both the string and the character set). By using higher-order functions such as
map and sequence comprehensions such as for, the functional index-of-any
avoids all need for variables.

Unnecessary complexity tends to snowball. For example, the special case branches in
the imperative indexOfAny use the magic number -1 to indicate a nonmatch. Should
the magic number be a symbolic constant? Whatever you think the right answer is, the

http://media.pragprog.com/titles/shcloj3/code/src/examples/exploring.clj

question itself disappears in the functional version. While shorter and simpler, the
functional index-of-any is also vastly more general:

indexOfAny searches a string, while index-of-any can search any sequence.

indexOfAny matches against a set of characters, while index-of-any can match
against any predicate.

indexOfAny returns the first match, while index-filter returns all the matches and
can be further composed with other filters.

As an example of how much more general the functional index-of-any is, you could
use code like we just wrote to find the third occurrence of “heads” in a series of coin
flips:

 (nth
 (index-filter #{:h} [:t :t :h :t :h :t :t :t :h :h])
 2)
 -> 8

So, writing index-of-any in a functional style, without loops or variables, is simpler,
less error prone, and more general than the imperative indexOfAny. On larger units of
code, these advantages become even more telling.

[13]

[14]

[15]

[16]

[17]

[18]

Wrapping Up
This has been a long chapter. But think about how much ground you’ve covered: you
can work with basic Clojure data and collections, define and call functions, work with
Java APIs, manage namespaces, and read and write metadata. You can write purely
functional code, and yet you can easily introduce side effects when you need to.
You’ve also met Lisp concepts including reader macros, special forms, and
destructuring.

While we’ll still introduce many features of Clojure in the remainder of the book,
virtually all of it (macros are a notable counter-example) is built upon the syntax and
structures introduced so far.

Next, we’ll dive into sequences, a grand unifying abstraction over how we traverse and
transform data in Clojure.

Footnotes

https://clojure.org/reference/reader

https://clojure.org/reference/special_forms#binding-forms

https://clojure.org/guides/destructuring

https://clojure.org/reference/namespaces

http://en.wikipedia.org/wiki/Metadata

http://www.dwheeler.com/sloccount/

Copyright © 2018, The Pragmatic Bookshelf.

https://clojure.org/reference/reader
https://clojure.org/reference/special_forms#binding-forms
https://clojure.org/guides/destructuring
https://clojure.org/reference/namespaces
http://en.wikipedia.org/wiki/Metadata
http://www.dwheeler.com/sloccount/

Chapter 3

Unifying Data with Sequences

Programs manipulate data. At the lowest level, programs work with structures such as
strings, lists, vectors, maps, sets, and trees. At a higher level, these same data structure
abstractions crop up again and again. For example:

XML data is a tree.
Database result sets can be viewed as lists or vectors.
Directory hierarchies are trees.
Files are often viewed as one big string or as a vector of lines.

In Clojure, all these data structures can be accessed through a single abstraction: the
sequence (or seq).

A seq (pronounced “seek”) is a logical list. It’s logical because Clojure does not tie
sequences to the concrete implementation details of the list data structure. Instead, the
seq is an abstraction that can be used everywhere.

Collections that can be viewed as seqs are called seq-able (pronounced “SEEK-a-
bull”). In this chapter, you’ll meet a variety of seq-able collections:

All Clojure collections
All Java collections
Java arrays and strings
Regular expression matches
Directory structures
I/O streams
XML trees

You’ll also meet the sequence library, a set of functions that can work with any seq-
able. Because so many things are sequences, the sequence library is much more
powerful and general than the collection API in most languages. The sequence library
includes functions to create, filter, and transform data. These functions act as the
collection API for Clojure, and they also replace many of the loops you would write in

an imperative language.

In this chapter, you will become a power user of Clojure sequences. You’ll see how to
use a common set of very expressive functions with a wide range of datatypes. Then,
in the next chapter (Chapter 4, Functional Programming), you’ll learn the functional
style in which the sequence library is written.

Everything Is a Sequence
Every aggregate data structure in Clojure can be viewed as a sequence. A sequence has
three core capabilities:

You can get the first item in a sequence:

 (first aseq)

first returns nil if its argument is empty or nil.

You can get everything after the first item—the rest of a sequence:

 (rest aseq)

rest returns an empty seq (not nil) if there are no more items.

You can construct a new sequence by adding an item to the front of an existing
sequence. This is called consing:

 (cons elem aseq)

Under the hood, these three capabilities are declared in the Java interface
clojure.lang.ISeq. (Keep this in mind when reading about Clojure, because the name
ISeq is often used interchangeably with seq.)

The seq function will return a seq on any seq-able collection:

 (seq coll)

seq will return nil if its coll is empty or nil. The next function will return the seq of
items after the first:

 (next aseq)

(next aseq) is equivalent to (seq (rest aseq)).

The seq functions work on lists:

 (first '(1 2 3))
 -> 1

 (rest '(1 2 3))
 -> (2 3)

 (cons 0 '(1 2 3))
 -> (0 1 2 3)

The seq functions work on all other Clojure data structures as well. For example, you
can use the seq functions on vectors:

 (first [1 2 3])
 -> 1

 (rest [1 2 3])
 -> (2 3)

 (cons 0 [1 2 3])
 -> (0 1 2 3)

The Origin of Cons
Clojure’s sequence is an abstraction based on Lisp’s concrete lists. In the original
implementation of Lisp, the three fundamental list operations were named car, cdr, and
cons. car and cdr are acronyms that refer to implementation details of Lisp on the original
IBM 704 platform. Many Lisps, including Clojure, replace these esoteric names with the
more meaningful names first and rest.

The third function, cons, is short for construct. Lisp programmers use cons as a noun,
verb, and adjective. You use cons to create a data structure called a cons cell, or just a cons
for short.

Most Lisps, including Clojure, retain the original cons name, since “construct” is a pretty
good mnemonic for what cons does. It also helps remind you that sequences are
immutable. For convenience, you might say that cons adds an element to a sequence, but
it’s more accurate to say that cons constructs a new sequence, which is like the original
sequence but with one element added.

When you apply rest or cons to a vector, the result is a seq, not a vector. In the REPL,
seqs print just like lists, as you can see in the earlier output. You can check the actual
returned type by using the seq? predicate:

 (seq? (rest [1 2 3]))
 -> true

The generality of seqs is very powerful, but sometimes you want to produce a specific

implementation type. This is covered in Calling Structure-Specific Functions .

You can treat maps as seqs, if you think of a map as a sequence of map entries (where
each entry is a key/value pair):

 (first {:fname "Aaron" :lname "Bedra"})
 -> [:lname "Bedra"]

 (rest {:fname "Aaron" :lname "Bedra"})
 -> ([:fname "Aaron"])

 (cons [:mname "James"] {:fname "Aaron" :lname "Bedra"})
 -> ([:mname "James"] [:lname "Bedra"] [:fname "Aaron"])

You can also treat sets as seqs:

 (first #{:the :quick :brown :fox})
 -> :brown

 (rest #{:the :quick :brown :fox})
 -> (:quick :fox :the)

 (cons :jumped #{:the :quick :brown :fox})
 -> (:jumped :brown :quick :fox :the)

Maps and sets have a stable traversal order, but that order depends on implementation
details, and you shouldn’t rely on it. Elements of a set will not necessarily come back
in the order that you put them in:

 #{:the :quick :brown :fox}
 -> #{:fox :the :quick :brown}

If you want a reliable order, you can use this:

 (sorted-set & elements)

sorted-set will sort the values by their natural sort order:

 (sorted-set :the :quick :brown :fox)
 -> #{:brown :fox :quick :the}

Likewise, key/value pairs in maps won’t necessarily come back in the order you put
them in:

 {:a 1 :b 2 :c 3}
 -> {:a 1, :c 3, :b 2}

You can create a sorted map with sorted-map:

 (sorted-map & elements)

sorted-maps won’t come back in the order you put them in either, but they will come
back sorted by key:

 (sorted-map :c 3 :b 2 :a 1)
 -> {:a 1, :b 2, :c 3}

In addition to the core capabilities of seq, two other capabilities are worth meeting
immediately: conj and into.

 (conj coll element & elements)
 (into to-coll from-coll)

conj adds one or more elements to a collection, and into adds all the items in one
collection to another. Both conj and into add items at an efficient insertion spot for the
underlying data structure. For lists, conj and into add to the front:

 (conj '(1 2 3) :a)
 -> (:a 1 2 3)

 (into '(1 2 3) '(:a :b :c))
 -> (:c :b :a 1 2 3)

For vectors, conj and into add elements to the back:

 (conj [1 2 3] :a)
 -> [1 2 3 :a]

 (into [1 2 3] [:a :b :c])
 -> [1 2 3 :a :b :c]

Because conj (and related functions) do the efficient thing for the underlying data
structure, you can often write code that is both efficient and completely decoupled
from a specific underlying implementation.

Why Do Functions on Vectors Return Lists?
When you try examples at the REPL, the results of rest and cons appear to be lists, even
when the inputs are vectors, maps, or sets. Does this mean that Clojure is converting
everything to a list internally? No! The sequence functions always return a seq regardless
of their inputs. You can verify this by using the seq? predicate:

 (list? (rest [1 2 3])
 -> false

 (seq? (rest [1 2 3]))
 -> true

As you can see, the result of (rest [1 2 3]) is not a list but a sequence. Sequences are logical
lists (but not concrete lists). Both lists and sequences print in the same way.

The Clojure sequence library is particularly suited for large (or even infinite)
sequences. Most Clojure sequences are lazy: they generate elements only when they
are actually needed. Thus, Clojure’s sequence functions can process sequences too
large to fit in memory.

Clojure sequences are immutable: they never change. This makes it easier to reason
about programs and means that Clojure sequences are safe for concurrent access. It
does, however, create a small problem for human language. English-language
descriptions flow much more smoothly when describing mutable things. Consider the
following two descriptions for a hypothetical sequence function triple:

triple triples each element of a sequence.
triple takes a sequence and returns a new sequence with each element of the
original sequence tripled.

The latter version is specific and accurate. The former is much easier to read, but it
might lead to the mistaken impression that a sequence is actually changing. Don’t be
fooled: sequences never change. If you see the phrase “foo changes x,” mentally
substitute “foo returns a changed copy of x.”

Using the Sequence Library
The Clojure sequence library provides a rich set of functionality that can work with
any sequence. If you come from an object-oriented background where nouns rule, the
sequence library is truly “Revenge of the Verbs.” The functions provide a rich
backbone of functionality that can take advantage of any data structure that obeys the
basic first/rest/cons contract.

The following functions are grouped into four broad categories:

Functions that create sequences
Functions that filter sequences
Sequence predicates
Functions that transform sequences

These divisions are somewhat arbitrary. Since sequences are immutable, most of the
sequence functions create new sequences. Some of the sequence functions both filter
and transform. Nevertheless, these divisions provide a rough road map through a large
library.

Creating Sequences
Clojure provides a number of functions that create sequences. range produces a
sequence from a start to an end, incrementing by step each time.

 (range start? end? step?)

Ranges include their start but not their end. If you do not specify them, start defaults
to zero, end defaults to positive infinity, and step defaults to 1. Try creating some
ranges at the REPL:

 (range 10) ;; end only
 -> (0 1 2 3 4 5 6 7 8 9)

 (range 10 20) ;; start + end
 -> (10 11 12 13 14 15 16 17 18 19)

 (range 1 25 2) ;; step by 2
 -> (1 3 5 7 9 11 13 15 17 19 21 23)

 (range 0 -1 -0.25) ;; negative step
 -> (0 -0.25 -0.5 -0.75)

 (range 1/2 4 1) ;; ratios
 -> (1/2 3/2 5/2 7/2)

The repeat function repeats an element x n times:

 (repeat n x)

Try to repeat some items from the REPL:

 (repeat 5 1)
 -> (1 1 1 1 1)

 (repeat 10 "x")
 -> ("x" "x" "x" "x" "x" "x" "x" "x" "x" "x")

Both range and repeat represent ideas that can be extended infinitely.

iterate begins with a value x and continues forever, applying a function f to each
value to calculate the next.

 (iterate f x)

If you begin with 1 and iterate with inc, you can generate the whole numbers:

 (take 10 (iterate inc 1))
 -> (1 2 3 4 5 6 7 8 9 10)

Since the sequence is infinite, you need another new function to help you view the
sequence from the REPL.

 (take n sequence)

take returns a lazy sequence of the first n items from a collection and provides one
way to create a finite view onto an infinite collection.

The whole numbers are a pretty useful sequence to have around, so let’s def them for
future use:

 (def whole-numbers (iterate inc 1))
 -> #'user/whole-numbers

When called with a single argument, repeat returns a lazy, infinite sequence:

 (repeat x)

Try repeating at the REPL. Don’t forget to wrap the result in a take:

 (take 20 (repeat 1))
 -> (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

The cycle function takes a collection and cycles it infinitely:

 (cycle coll)

Try cycling some collections at the REPL:

 (take 10 (cycle (range 3)))
 -> (0 1 2 0 1 2 0 1 2 0)

The interleave function takes multiple collections and produces a new collection that
interleaves values from each collection until one of the collections is exhausted.

 (interleave & colls)

When one of the collections is exhausted, the interleave stops. So, you can mix finite
and infinite collections:

 (interleave whole-numbers ["A" "B" "C" "D" "E"])
 -> (1 "A" 2 "B" 3 "C" 4 "D" 5 "E")

Closely related to interleave is interpose, which returns a sequence with each of the
elements of the input collection segregated by a separator:

 (interpose separator coll)

You can use interpose to build delimited strings:

 (interpose "," ["apples" "bananas" "grapes"])
 -> ("apples" "," "bananas" "," "grapes")

interpose works nicely with (apply str ...) to produce output strings:

 (apply str (interpose "," ["apples" "bananas" "grapes"]))
 -> "apples,bananas,grapes"

The (apply str (interpose separator sequence)) idiom is common enough that Clojure
provides a performance-optimized version as clojure.string/join:

 (join separator sequence)

Use clojure.string/join to comma-delimit a list of words:

 (require '[clojure.string :refer [join]])

 (join \, ["apples" "bananas" "grapes"])
 -> "apples,bananas,grapes"

For each collection type in Clojure, there is a function that takes an arbitrary number
of arguments and creates a collection of that type:

 (list & elements)
 (vector & elements)
 (hash-set & elements)
 (hash-map key-1 val-1 ...)

hash-set has a cousin set that works a little differently: set expects a collection as its
first argument:

 (set [1 2 3])
 -> #{1 2 3}

hash-set takes a variable list of arguments:

 (hash-set 1 2 3)
 -> #{1 2 3}

vector also has a cousin, vec, which takes a single collection argument instead of a
variable argument list:

 (vec (range 3))
 -> [0 1 2]

Now that you have the basics of creating sequences, you can use other Clojure
functions to filter and transform them.

Filtering Sequences
Clojure provides a number of functions that filter a sequence, returning a subsequence
of the original sequence. The most basic of these is filter:

 (filter pred coll)

filter takes a predicate and a collection and returns a sequence of objects for which the
filter returns true (when interpreted in a Boolean context). You can filter the whole-
numbers from the previous section to get the odd numbers or the even numbers:

 (take 10 (filter even? whole-numbers))
 -> (2 4 6 8 10 12 14 16 18 20)

 (take 10 (filter odd? whole-numbers))

 -> (1 3 5 7 9 11 13 15 17 19)

You can take from a sequence while a predicate remains true with take-while:

 (take-while pred coll)

For example, to take all the characters in a string up to the first vowel, we can define
some useful helper functions:

 (def vowel? #{\a\e\i\o\u})
 (def consonant? (complement vowel?))

Then use those predicates to take the characters from the string up to the first vowel:

 (take-while consonant? "the-quick-brown-fox")
 -> (\t \h)

A couple of interesting things are happening here:

Sets act as functions that look up a value in the set and return either the value or
nil if not found. So, you can read #{\a\e\i\o\u} as “the function that tests to see
whether its argument is a vowel.”

complement reverses the behavior of another function. Here we create
consonant? by defining it as the function that is the complement of vowel?.

The opposite of take-while is drop-while:

 (drop-while pred coll)

drop-while drops elements from the beginning of a sequence while a predicate is true
and then returns the rest. You could use drop-while to drop all leading non-vowels
from a string:

 (drop-while consonant? "the-quick-brown-fox")
 -> (\e \- \q \u \i \c \k \- \b \r \o \w \n \- \f \o \x)

split-at and split-with will split a collection into two collections:

 (split-at index coll)
 (split-with pred coll)

split-at takes an index, and split-with takes a predicate:

 (split-at 5 (range 10))
 ->[(0 1 2 3 4) (5 6 7 8 9)]

 (split-with #(<= % 10) (range 0 20 2))
 ->[(0 2 4 6 8 10) (12 14 16 18)]

All the take-, split-, and drop- functions return lazy sequences, of course.

Sequence Predicates
Filter functions take a predicate and return a sequence. Closely related are the
sequence predicates. A sequence predicate asks how some other predicate applies to
every item in a sequence. For example, the every? predicate asks whether some other
predicate is true for every element of a sequence.

 (every? pred coll)

 (every? odd? [1 3 5])
 -> true

 (every? odd? [1 3 5 8])
 -> false

A lower bar is set by some:

 (some pred coll)

some returns the first non-false value for its predicate or returns nil if no element
matched:

 (some even? [1 2 3])
 -> true

 (some even? [1 3 5])
 -> nil

Notice that some does not end with a question mark. some is not a predicate, although
it’s often used like one. some returns the actual value of the first match instead of
true. The distinction is invisible when you pair some with even?, since even? is itself
a predicate. To see a non-true match, try using some with identity to find the first
logically true value in a sequence:

 (some identity [nil false 1 nil 2])
 -> 1

A common use of some is to perform a linear search to see if a sequence contains a
matching element, which is typically written as a set of a single element. For example

to see if a sequence contains the value 3:

 (some #{3} (range 20))
 -> 3

Note that the value returned is the value in the sequence, which would act as a truthy
value if this was used as a conditional test.

The behavior of the other predicates is obvious from their names:

 (not-every? pred coll)
 (not-any? pred coll)

Not every whole number is even:

 (not-every? even? whole-numbers)
 -> true

But it would be a lie to claim that not any whole number is even:

 (not-any? even? whole-numbers)
 -> false

Note that we picked questions to which we already knew the answer. In general, you
have to be careful when applying predicates to infinite collections. They might run
forever.

Transforming Sequences
Transformation functions transform the values in the sequence. The simplest
transformation is map:

 (map f coll)

map takes a source collection coll and a function f, and it returns a new sequence by
invoking f on each element in the coll. You could use map to wrap every element in a
collection with an HTML tag.

 (map #(format "<p>%s</p>" %) ["the" "quick" "brown" "fox"])
 -> ("<p>the</p>" "<p>quick</p>" "<p>brown</p>" "<p>fox</p>")

map can also take more than one collection argument. f must then be a function of
multiple arguments. map will call f with one argument from each collection, stopping
whenever the smallest collection is exhausted:

 (map #(format "<%s>%s</%s>" %1 %2 %1)
 ["h1" "h2" "h3" "h1"] ["the" "quick" "brown" "fox"])
 -> ("<h1>the</h1>" "<h2>quick</h2>" "<h3>brown</h3>"
 "<h1>fox</h1>")

Another common transformation is reduce:

 (reduce f coll)

f is a function of two arguments. reduce applies f on the first two elements in coll and
then applies f to the result and the third element, and so on. reduce is useful for
functions that “total up” a sequence in some way. You can use reduce to add items:

 (reduce + (range 1 11))
 -> 55

or to multiply them:

 (reduce * (range 1 11))
 -> 3628800

You can sort a collection with sort or sort-by:

 (sort comp? coll)
 (sort-by a-fn comp? coll)

sort sorts a collection by the natural order of its elements, where sort-by sorts a
sequence by the result of calling a-fn on each element:

 (sort [42 1 7 11])
 -> (1 7 11 42)

 (sort-by #(.toString %) [42 1 7 11])
 -> (1 11 42 7)

If you don’t want to sort by natural order, you can specify an optional comparison
function comp for either sort or sort-by:

 (sort > [42 1 7 11])
 -> (42 11 7 1)

 (sort-by :grade > [{:grade 83} {:grade 90} {:grade 77}])
 -> ({:grade 90} {:grade 83} {:grade 77})

The granddaddy of all filters and transformations is the list comprehension. A list
comprehension creates a list based on an existing list, using set notation. In other

words, a comprehension states the properties that the result list must satisfy. In
general, a list comprehension will consist of the following:

Input list(s)
Placeholder bindings for elements in the input lists
Predicates on the elements
An output form that produces output from the elements of the input lists that
satisfy the predicates

Of course, Clojure generalizes the notion of list comprehension to sequence
comprehension. Clojure comprehensions use the for macro. Note that the list
comprehension for has nothing to do with the for loop found in imperative languages.

 (for [binding-form coll-expr filter-expr? ...] expr)

for takes a vector of binding-form/coll-exprs, plus optional filter-exprs, and then
yields a sequence of exprs.

List comprehension is more general than functions such as map and filter and can in
fact emulate most of the filtering and transformation functions described earlier.

You can rewrite the previous map example as a list comprehension:

 (for [word ["the" "quick" "brown" "fox"]]
 (format "<p>%s</p>" word))
 -> ("<p>the</p>" "<p>quick</p>" "<p>brown</p>" "<p>fox</p>")

This reads almost like English: “For [each] word in [a sequence of words], format
[according to format instructions].”

Comprehensions can emulate filter using a :when clause. You can pass even? to
:when to filter the even numbers:

 (take 10 (for [n whole-numbers :when (even? n)] n))
 -> (2 4 6 8 10 12 14 16 18 20)

A :while clause continues the evaluation only while its expression holds true:

 (for [n whole-numbers :while (even? n)] n)
 -> ()

The real power of for comes when you work with more than one binding expression.
For example, you can express all possible positions on a chessboard in algebraic
notation by binding both rank and file:

 (for [file "ABCDEFGH"
 rank (range 1 9)]
 (format "%c%d" file rank))
 -> ("A1" "A2" ... elided ... "H7 ""H8")

Clojure iterates over the rightmost binding expression in a sequence comprehension
first and then works its way left. Because rank is listed to the right of file in the
binding form, rank iterates faster. If you want files to iterate faster, you can reverse the
binding order and list rank first:

 (for [rank (range 1 9)
 file "ABCDEFGH"]
 (format "%c%d" file rank))
 -> ("A1" "B1" ... elided ... "G8" "H8")

In many languages, transformations, filters, and comprehensions do their work
immediately. Do not assume this in Clojure. Most sequence functions do not traverse
elements until you actually try to use them.

Lazy and Infinite Sequences
Most Clojure sequences are lazy; in other words, elements are not calculated until
they’re needed. Using lazy sequences has many benefits:

You can postpone expensive computations that may not in fact be needed.
You can work with huge data sets that don’t fit into memory.
You can delay I/O until it’s absolutely needed.

Consider the code and following expression that produces (mostly) prime numbers
using wheel factorization:[19]

src/examples/primes.clj

 (ns examples.primes)
 ;; Taken from clojure.contrib.lazy-seqs
 ; primes cannot be written efficiently as a function, because
 ; it needs to look back on the whole sequence. contrast with
 ; fibs and powers-of-2 which only need a fixed buffer of 1 or 2
 ; previous values.
 (def primes
 (concat
 [2 3 5 7]
 (lazy-seq
 (let [primes-from
 (fn primes-from [n [f & r]]
 (if (some #(zero? (rem n %))
 (take-while #(<= (* % %) n) primes))
 (recur (+ n f) r)
 (lazy-seq (cons n (primes-from (+ n f) r)))))
 wheel (cycle [2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2
 6 4 6 8 4 2 4 2 4 8 6 4 6 2 4 6
 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2 10])]
 (primes-from 11 wheel)))))

 (require '[examples.primes :refer :all])
 (def ordinals-and-primes (map vector (iterate inc 1) primes))
 -> #'user/ordinals-and-primes

ordinals-and-primes includes pairs like [5, 11] (11 is the fifth prime number). Both
ordinals and primes are infinite, but ordinals-and-primes fits into memory just fine,
because it’s lazy. Just take what you need from it:

http://media.pragprog.com/titles/shcloj3/code/src/examples/primes.clj

 (take 5 (drop 1000 ordinals-and-primes))
 -> ([1001 7927] [1002 7933] [1003 7937] [1004 7949] [1005 7951])

When should you prefer lazy sequences? Most of the time. Most sequence functions
return lazy sequences, so you “pay” only for what you use. More important, lazy
sequences do not require any special effort on your part. In the previous example,
iterate, primes, and map return lazy sequences, so ordinals-and-primes gets laziness
“for free.”

Lazy sequences are critical to functional programming in Clojure. How to Be Lazy
explores creating and using lazy sequences in much greater detail. Additionally, Eager
Transformations talks about those cases when you should prefer non-lazy approaches.

When you’re viewing a large sequence from the REPL, you may want to use take to
prevent the REPL from evaluating the entire sequence. In other contexts, you may
have the opposite problem. You’ve created a lazy sequence, and you want to force the
sequence to evaluate fully. The problem usually arises when the code generating the
sequence has side effects. Consider the following sequence, which embeds side effects
via println:

 (def x (for [i (range 1 3)] (do (println i) i)))
 -> #'user/x

Newcomers to Clojure are surprised that the previous code prints nothing. Since the
definition of x doesn’t actually use the elements, Clojure does not evaluate the
comprehension to get them. You can force evaluation with doall:

 (doall coll)

doall forces Clojure to walk the elements of a sequence and returns the elements as a
result:

 (doall x)
 | 1
 | 2
 -> (1 2)

You can also use dorun:

 (dorun coll)

dorun walks the elements of a sequence without keeping past elements in memory. As
a result, dorun can walk collections too large to fit in memory.

 (def x (for [i (range 1 3)] (do (println i) i)))
 -> #'user/x

 (dorun x)
 | 1
 | 2
 -> nil

The nil return value is a telltale reminder that dorun does not hold a reference to the
entire sequence. The dorun and doall functions help you deal with side effects, while
most of the rest of Clojure discourages side effects, so you’ll usually not need these
functions.

Clojure Makes Java Seq-able
The seq abstraction of first/rest applies to anything that there can be more than one of.
In the Java world, that includes the following:

The Collections API
Regular expressions
File system traversal
XML processing
Relational database results

Clojure wraps these Java APIs, making the sequence library available for almost
everything you do.

Seq-ing Java Collections
If you try to apply the sequence functions to Java collections, you’ll find that they
behave as sequences. Collections that can act as sequences are called seq-able. For
example, arrays are seq-able:

 ; String.getBytes returns a byte array
 (first (.getBytes "hello"))
 -> 104

 (rest (.getBytes "hello"))
 -> (101 108 108 111)

 (cons (int \h) (.getBytes "ello"))
 -> (104 101 108 108 111)

Hashtables and Maps are also seq-able:

 ; System.getProperties returns a Hashtable
 (first (System/getProperties))
 -> #object[java.util.Hashtable$Entry 0x12468a38
 "java.runtime.name=Java(TM) SE Runtime Environment"]

 (rest (System/getProperties))
 -> (#object[java.util.Hashtable$Entry 0x5b239d7d
 "sun.boot.library.path=/Library/... etc. ...

Remember that sequences are immutable, even when the underlying Java collection is
mutable. So, you can’t update the system properties by consing a new item onto

(System/getProperties). cons will return a new sequence; the existing properties are
unchanged.

Since strings are sequences of characters, they also are seq-able:

 (first "Hello")
 -> \H

 (rest "Hello")
 -> (\e \l \l \o)

 (cons \H "ello")
 -> (\H \e \l \l \o)

Clojure will automatically obtain a sequence from a collection, but it won’t
automatically convert a sequence back to the original collection type. With most
collection types this behavior is intuitive, but with strings you’ll often want to convert
the result to a string. Consider reversing a string. Clojure provides reverse:

 ; probably not what you want
 (reverse "hello")
 -> (\o \l \l \e \h)

To convert a sequence back to a string, use (apply str seq):

 (apply str (reverse "hello"))
 -> "olleh"

The Java collections are seq-able, but for most scenarios, they don’t offer advantages
over Clojure’s built-in collections. Prefer the Java collections only in interop scenarios
where you’re working with legacy Java APIs.

Seq-ing Regular Expressions
Clojure’s regular expressions use the java.util.regex library under the hood. At the
lowest level, this exposes the mutable nature of Java’s Matcher. You can use re-
matcher to create a Matcher for a regular expression and a string and then loop on re-
find to iterate over the matches.

 (re-matcher regexp string)

src/examples/sequences.clj

 ; don't do this!
 (let [m (re-matcher #"\w+" "the quick brown fox")]

http://media.pragprog.com/titles/shcloj3/code/src/examples/sequences.clj

 (loop [match (re-find m)]
 (when match
 (println match)
 (recur (re-find m)))))

 | the
 | quick
 | brown
 | fox
 -> nil

Much better is to use the higher-level re-seq.

 (re-seq regexp string)

re-seq exposes an immutable seq over the matches. This gives you the power of all of
Clojure’s sequence functions. Try these expressions at the REPL:

 (re-seq #"\w+" "the quick brown fox")
 -> ("the" "quick" "brown" "fox")

 (sort (re-seq #"\w+" "the quick brown fox"))
 -> ("brown" "fox" "quick" "the")

 (drop 2 (re-seq #"\w+" "the quick brown fox"))
 -> ("brown" "fox")

 (map clojure.string/upper-case (re-seq #"\w+" "the quick brown fox"))
 -> ("THE" "QUICK" "BROWN" "FOX")

re-seq is an example of how good abstractions reduce code bloat. Regular expression
matches are not a special thing, requiring special methods to deal with them. They are
sequences, just like everything else. Thanks to the number of sequence functions, you
get more functionality “for free” than you would likely end up with after a misguided
foray into writing regexp-specific functions.

Seq-ing the File System
You can seq over the file system. For starters, you can call java.io.File directly:

 (import 'java.io.File)
 (.listFiles (File. "."))
 -> [Ljava.io.File;@1f70f15e

The [Ljava.io.File... is Java’s toString representation for an array of Files. Sequence

functions would call seq on this automatically, but the REPL doesn’t.

So, seq it yourself:

 (seq (.listFiles (File. ".")))
 -> (#object[java.io.File 0x44fe9319 "./clojurebreaker"] ...)

If the default print format for files doesn’t suit you, you could map them to a string
form with getName:

 ; overkill
 (map #(.getName %) (seq (.listFiles (File. "."))))
 -> ("clojurebreaker" "data" ...)

Once you decide to use a function like map, calling seq is redundant. Sequence library
functions call seq for you, so you don’t have to. The previous code simplifies to this:

 (map #(.getName %) (.listFiles (File. ".")))
 -> ("clojurebreaker" "data" ...)

Often, you want to recursively traverse the entire directory tree. Clojure provides a
depth-first walk via file-seq. If you file-seq from the sample code directory for this
book, you will see a lot of files:

 (count (file-seq (File. ".")))
 -> 169

What if you want to see only the files that have been changed recently? Write a
predicate recently-modified? that checks to see whether a file was touched in the last
half hour:

src/examples/sequences.clj

 (defn minutes-to-millis [mins] (* mins 1000 60))

 (defn recently-modified? [file]
 (> (.lastModified file)
 (- (System/currentTimeMillis) (minutes-to-millis 30))))

Give it a try:

 (filter recently-modified? (file-seq (File. ".")))
 -> (./sequences ./sequences/sequences.clj)

Note that your results will vary from those shown here.

http://media.pragprog.com/titles/shcloj3/code/src/examples/sequences.clj

Seq-ing a Stream
In Java, a Reader provides a stream of characters. You can seq over the lines of any
Java Reader using line-seq. To get a Reader, you can always use Clojure’s
clojure.java.io library. The clojure.java.io library provides a reader function that
returns a reader on a stream, file, URL, or URI.

 (require '[clojure.java.io :refer [reader]])
 ; leaves reader open...
 (take 2 (line-seq (reader "src/examples/utils.clj")))
 -> ("(ns examples.utils" " (:import [java.io BufferedReader

InputStreamReader]))")

Since readers can represent non-memory resources that need to be closed, you should
wrap reader creation in a with-open. Create an expression that uses the sequence
function count, to count the number of lines in a file, and uses with-open to correctly
close the reader when the body is complete:

 (with-open [rdr (reader "src/examples/utils.clj")]
 (count (line-seq rdr)))
 -> 64

To make the example more useful, add a filter to count only non-blank lines:

 (with-open [rdr (reader "src/examples/utils.clj")]
 (count (filter #(re-find #"\S" %) (line-seq rdr))))
 -> 55

Using seqs both on the file system and on the contents of individual files, you can
quickly create interesting utilities. Create a program that defines these three predicates:

non-blank? detects non-blank lines.
non-svn? detects files that are not Subversion metadata.
clojure-source? detects Clojure source code files.

Then, create a clojure-loc function that counts the lines of Clojure code in a directory
tree, using a combination of sequence functions along the way: reduce, for, count,
and filter.

src/examples/sequences.clj

 (use '[clojure.java.io :only (reader)])
 (use '[clojure.string :only (blank?)])
 (defn non-blank? [line] (not (blank? line)))

http://media.pragprog.com/titles/shcloj3/code/src/examples/sequences.clj

 (defn non-svn? [file] (not (.contains (.toString file) ".svn")))

 (defn clojure-source? [file] (.endsWith (.toString file) ".clj"))

 (defn clojure-loc [base-file]
 (reduce
 +
 (for [file (file-seq base-file)
 :when (and (clojure-source? file) (non-svn? file))]
 (with-open [rdr (reader file)]
 (count (filter non-blank? (line-seq rdr)))))))

Now let’s use clojure-loc to find out how much Clojure code is in Clojure itself:

 (clojure-loc (java.io.File. "/home/abedra/src/opensource/clojure/clojure"
))

 -> 38716

The clojure-loc function is very task specific, but because it’s built out of sequence
functions and simple predicates, you can easily tweak it to very different tasks.

Calling Structure-Specific Functions
Clojure’s sequence functions allow you to write very general code. Sometimes you’ll
want to be more specific and take advantage of the characteristics of a specific data
structure. Clojure includes functions that specifically target lists, vectors, maps, structs,
and sets.

We’ll take a quick tour of some of these structure-specific functions next. For a
complete list of structure-specific functions in Clojure, see the Data Structures section
of the Clojure website.[20]

Functions on Lists
Clojure supports the traditional names peek and pop for retrieving the first element of
a list and the remainder, respectively:

 (peek coll)
 (pop coll)

Give a simple list a peek and pop:

 (peek '(1 2 3))
 -> 1

 (pop '(1 2 3))
 -> (2 3)

peek is the same as first, but pop is not the same as rest. pop will throw an exception
if the sequence is empty:

 (rest ())
 -> ()

 (pop ())
 -> java.lang.IllegalStateException: Can't pop empty list

Functions on Vectors
Vectors also support peek and pop, but they deal with the element at the end of the
vector:

 (peek [1 2 3])
 -> 3

 (pop [1 2 3])
 -> [1 2]

get returns the value at an index or returns nil if the index is outside the vector:

 (get [:a :b :c] 1)
 -> :b

 (get [:a :b :c] 5)
 -> nil

Vectors are themselves functions. They take an index argument and return a value, or
they throw an exception if the index is out of bounds:

 ([:a :b :c] 1)
 -> :b

 ([:a :b :c] 5)
 -> java.lang.IndexOutOfBoundsException

assoc associates a new value with a particular index:

 (assoc [0 1 2 3 4] 2 :two)
 -> [0 1 :two 3 4]

subvec returns a subvector of a vector:

 (subvec avec start end?)

If end is not specified, it defaults to the end of the vector:

 (subvec [1 2 3 4 5] 3)
 -> [4 5]

 (subvec [1 2 3 4 5] 1 3)
 -> [2 3]

Of course, you could simulate subvec with a combination of drop and take:

 (take 2 (drop 1 [1 2 3 4 5]))
 -> (2 3)

The difference is that take and drop are general and can work with any sequence. On
the other hand, subvec is much faster for vectors. Whenever a structure-specific
function like subvec duplicates functionality already available in the sequence library,

it’s probably there for performance. The documentation string for functions like
subvec includes performance characteristics.

Functions on Maps
Clojure provides several functions for reading the keys and values in a map. keys
returns a sequence of the keys, and vals returns a sequence of the values:

 (keys map)
 (vals map)

Try taking keys and values from a simple map:

 (keys {:sundance "spaniel", :darwin "beagle"})
 -> (:sundance :darwin)

 (vals {:sundance "spaniel", :darwin "beagle"})
 -> ("spaniel" "beagle")

Note that while maps are unordered, both keys and vals are guaranteed to return the
keys and values in the same order as a seq on the map.

get returns the value for a key or returns nil.

 (get map key value-if-not-found?)

Use your REPL to test that get behaves as expected for keys both present and missing:

 (get {:sundance "spaniel", :darwin "beagle"} :darwin)
 -> "beagle"

 (get {:sundance "spaniel", :darwin "beagle"} :snoopy)
 -> nil

There’s an approach that’s even simpler than get. Maps are functions of their keys. So
you can leave out the get entirely, putting the map in function position at the
beginning of a form:

 ({:sundance "spaniel", :darwin "beagle"} :darwin)
 -> "beagle"

 ({:sundance "spaniel", :darwin "beagle"} :snoopy)
 -> nil

Keywords are also functions. They take a collection as an argument and look

themselves up in the collection. Since :darwin and :sundance are keywords, the earlier
forms can be written with their elements in reverse order.

 (:darwin {:sundance "spaniel", :darwin "beagle"})
 -> "beagle"

 (:snoopy {:sundance "spaniel", :darwin "beagle"})
 -> nil

If you look up a key in a map and get nil back, you can’t tell whether the key was
missing from the map or present with a value of nil. The contains? function solves this
problem by testing for the mere presence of a key.

 (contains? map key)

Create a map where nil is a legal value:

 (def score {:stu nil :joey 100})

:stu is present, but if you see the nil value, you might not think so:

 (:stu score)
 -> nil

If you use contains?, you can verify that :stu is in the game, although presumably not
doing very well:

 (contains? score :stu)
 -> true

Another approach is to call get, passing in an optional third argument that will be
returned if the key is not found:

 (get score :stu :score-not-found)
 -> nil

 (get score :aaron :score-not-found)
 -> :score-not-found

The default return value of :score-not-found makes it possible to distinguish that
:aaron is not in the map, while :stu is present with a value of nil.

If nil is a legal value in map, use contains? or the three-argument form of get to test
the presence of a key.

Clojure also provides several functions for building new maps:

assoc returns a map with a key/value pair added.
dissoc returns a map with a key removed.
select-keys returns a map, keeping only a specified set of keys.
merge combines maps. If multiple maps contain a key, the rightmost wins.

To test these functions, create some song data:

src/examples/sequences.clj

 (def song {:name "Agnus Dei"
 :artist "Krzysztof Penderecki"
 :album "Polish Requiem"
 :genre "Classical"})

Next, create various modified versions of the song collection:

 (assoc song :kind "MPEG Audio File")
 -> {:name "Agnus Dei", :album "Polish Requiem",
 :kind "MPEG Audio File", :genre "Classical",
 :artist "Krzysztof Penderecki"}

 (dissoc song :genre)
 -> {:name "Agnus Dei", :album "Polish Requiem",
 :artist "Krzysztof Penderecki"}

 (select-keys song [:name :artist])
 -> {:name "Agnus Dei", :artist "Krzysztof Penderecki"}

 (merge song {:size 8118166, :time 507245})
 -> {:name "Agnus Dei", :album "Polish Requiem",
 :genre "Classical", :size 8118166,
 :artist "Krzysztof Penderecki", :time 507245}

Remember that song itself never changes. Each of these functions returns a new
collection.

The most interesting map construction function is merge-with.

 (merge-with merge-fn & maps)

merge-with is like merge, except that when two or more maps have the same key, you
can specify your own function for combining the values under the key. Use merge-
with and concat to build a sequence of values under each key:

http://media.pragprog.com/titles/shcloj3/code/src/examples/sequences.clj

 (merge-with
 concat
 {:rubble ["Barney"], :flintstone ["Fred"]}
 {:rubble ["Betty"], :flintstone ["Wilma"]}
 {:rubble ["Bam-Bam"], :flintstone ["Pebbles"]})
 -> {:rubble ("Barney" "Betty" "Bam-Bam"),
 :flintstone ("Fred" "Wilma" "Pebbles")}

Starting with three distinct collections of family members keyed by last name, the
previous code combines them into one collection keyed by last name.

Functions on Sets
In addition to the set functions in the clojure.core namespace, Clojure provides a
group of functions in the clojure.set namespace. To use these functions with
unqualified names, call (require ’[clojure.set :refer :all]) from the REPL. For the
following examples, you’ll also need the following vars:

src/examples/sequences.clj

 (def languages #{"java" "c" "d" "clojure"})
 (def beverages #{"java" "chai" "pop"})

The first group of clojure.set functions performs operations from set theory:

union returns the set of all elements present in either input set.

intersection returns the set of all elements present in both input sets.

difference returns the set of all elements present in the first input set, minus those
in the second.

select returns the set of all elements matching a predicate.

Write an expression that finds the union of all languages and beverages:

 (union languages beverages)
 -> #{"java" "c" "d" "clojure" "chai" "pop"}

Next, try the languages that are not also beverages:

 (difference languages beverages)
 -> #{"c" "d" "clojure"}

If you enjoy terrible puns, you’ll like the fact that some things are both languages and

http://media.pragprog.com/titles/shcloj3/code/src/examples/sequences.clj

beverages:

 (intersection languages beverages)
 -> #{"java"}

A number of languages can’t afford a name larger than a single character:

 (select #(= 1 (count %)) languages)
 -> #{"c" "d"}

Set union and set difference are part of set theory, but they’re also part of relational
algebra, which is the basis for query languages such as SQL. Relational algebra
consists of six primitive operators: set union and set difference (described earlier), plus
rename, selection, projection, and cross product.

Clojure sets (and maps) have everything we need to implement a basic relational
algebra system. We’ll use maps to describe each tuple (like a row in a relational
database) and a set to contain all of the tuples in a relation (like a table in a relational
database).

The following examples work against an in-memory database of musical
compositions. First, we’ll define the data in our “database”, which are just sets of
maps:

src/examples/sequences.clj

 (def compositions
 #{{:name "The Art of the Fugue" :composer "J. S. Bach"}
 {:name "Musical Offering" :composer "J. S. Bach"}
 {:name "Requiem" :composer "Giuseppe Verdi"}
 {:name "Requiem" :composer "W. A. Mozart"}})
 (def composers
 #{{:composer "J. S. Bach" :country "Germany"}
 {:composer "W. A. Mozart" :country "Austria"}
 {:composer "Giuseppe Verdi" :country "Italy"}})
 (def nations
 #{{:nation "Germany" :language "German"}
 {:nation "Austria" :language "German"}
 {:nation "Italy" :language "Italian"}})

The rename function renames keys (database columns) based on a map from original
names to new names.

 (rename relation rename-map)

http://media.pragprog.com/titles/shcloj3/code/src/examples/sequences.clj

Rename the compositions to use a title key instead of name:

 (rename compositions {:name :title})
 -> #{{:title "Requiem", :composer "Giuseppe Verdi"}
 {:title "Musical Offering", :composer "J.S. Bach"}
 {:title "Requiem", :composer "W. A. Mozart"}
 {:title "The Art of the Fugue", :composer "J.S. Bach"}}

The select function returns maps, for which a predicate is true, and is analogous to the
WHERE portion of a SQL SELECT:

 (select pred relation)

Write a select expression that finds all the compositions whose title is "Requiem":

 (select #(= (:name %) "Requiem") compositions)
 -> #{{:name "Requiem", :composer "W. A. Mozart"}
 {:name "Requiem", :composer "Giuseppe Verdi"}}

The project function returns only the parts of maps that match a set of keys.

 (project relation keys)

project is similar to a SQL SELECT that specifies a subset of columns. Write a
projection that returns only the name of the compositions:

 (project compositions [:name])
 -> #{{:name "Musical Offering"}
 {:name "Requiem"}
 {:name "The Art of the Fugue"}}

The final relational primitive, which is a cross product, is the foundation for the
various kinds of joins in relational databases. The cross product returns every possible
combination of rows in the different tables. You can do this easily enough in Clojure
with a list comprehension:

 (for [m compositions c composers] (concat m c))
 -> ... 4 x 3 = 12 rows ...

Although the cross product is theoretically interesting, you’ll typically want some
subset of the full cross product. For example, you might want to join sets based on
shared keys:

 (join relation-1 relation-2 keymap?)

You can join the composition names and composers on the shared key :composer:

 (join compositions composers)
 -> #{{:name "Requiem", :country "Austria",
 :composer "W. A. Mozart"}
 {:name "Musical Offering", :country "Germany",
 :composer "J. S. Bach"}
 {:name "Requiem", :country "Italy",
 :composer "Giuseppe Verdi"}
 {:name "The Art of the Fugue", :country "Germany",
 :composer "J. S. Bach"}}

If the key names in the two relations don’t match, you can pass a keymap that maps
the key names in relation-1 to their corresponding keys in relation-2. For example,
you can join composers, which uses :country, to nations, which uses :nation. For
example:

 (join composers nations {:country :nation})
 -> #{{:language "German", :nation "Austria",
 :composer "W. A. Mozart", :country "Austria"}
 {:language "German", :nation "Germany",
 :composer "J. S. Bach", :country "Germany"}
 {:language "Italian", :nation "Italy",
 :composer "Giuseppe Verdi", :country "Italy"}}

You can combine the relational primitives. Perhaps you want to know the set of all
countries that are home to the composer of a requiem. You can use select to find all
the requiems, join them with their composers, and project to narrow the results to just
the country names:

 (project
 (join
 (select #(= (:name %) "Requiem") compositions)
 composers)
 [:country])
 -> #{{:country "Italy"} {:country "Austria"}}

The analogy between Clojure’s relational algebra and a relational database is
instructive. Remember, though, that Clojure’s relational algebra is a general-purpose
tool. You can use it on any kind of set-relational data. And while you’re using it, you
have the entire power of Clojure and Java at your disposal.

[19]

[20]

Wrapping Up
Clojure unifies all kinds of collections under a single abstraction, the sequence.
Clojure also provides a comprehensive library for working with data in the form of
sequences. In combination, they provide a great deal of reuse across every Clojure
application and library.

Clojure’s sequences are implemented using functional programming techniques:
immutable data, recursive definition, and lazy realization. In the next chapter, you’ll
see how to use these techniques directly, further expanding the power of Clojure.

Footnotes

https://en.wikipedia.org/wiki/Wheel_factorization

https://clojure.org/reference/data_structures

Copyright © 2018, The Pragmatic Bookshelf.

https://en.wikipedia.org/wiki/Wheel_factorization
https://clojure.org/reference/data_structures

Chapter 4

Functional Programming

Functional programming (FP) is a big topic, not to be learned in 21 days[21] or in a
single chapter of a book. Nevertheless, you can reach a first level of effectiveness
using lazy and recursive techniques in Clojure fairly quickly, and that is what we’ll
accomplish this chapter.

We’ll start with a quick overview of FP terms and concepts and an introduction to the
guidelines of Clojure FP that we’ll refer to throughout the chapter. Next we’ll
experience the power of lazy sequences by working through a series of
implementations of the Fibonacci numbers. As cool as lazy sequences are, you rarely
need to construct them yourself, and we’ll see better ways to recast problems to solve
them directly with the sequence library.

We’ll close with some advanced techniques and see some scenarios where eager
transformations have advantages over lazy sequences.

Functional Programming Concepts
Functional programming leads to code that is easier to write, read, test, and reuse.
Here’s how it works.

Pure Functions
Programs are built out of pure functions. A pure function has no side effects; that is, it
doesn’t depend on anything but its arguments, and its only influence on the outside
world is through its return value.

Mathematical functions are pure functions. Two plus two is four, no matter where or
when you ask. Also, asking doesn’t do anything other than return the answer.

Program output is decidedly impure. For example, when you println, you change the
outside world by pushing data onto an output stream. Also, the results of println
depend on state outside the function: the standard output stream might be redirected,
closed, or broken.

If you start writing pure functions, you’ll quickly realize that pure functions and
immutable data go hand in hand. Consider the following mystery function:

 (defn mystery [input]
 (if input data-1 data-2))

If mystery is a pure function, then regardless of what it does, data-1 and data-2 have
to be immutable! Otherwise, changes to the data would cause the function to return
different values for the same input.

A single piece of mutable data can ruin the game, rendering an entire call chain of
functions impure. So, once you make a commitment to writing pure functions, you end
up using immutable data in large sections of your application.

Persistent Data Structures
Immutable data is critical to Clojure’s approach to both FP and state. On the FP side,
pure functions cannot have side effects, such as updating the state of a mutable object.
On the state side, Clojure’s reference types require immutable data structures to
implement their concurrency guarantees.

The fly in the ointment is performance. When all data is immutable, “update”
translates into “create a copy of the original data, plus my changes.” This will use up

memory quickly! Imagine that you have an address book that takes up 5 MB of
memory. Then, you make five small updates. With a mutable address book, you are
still consuming about 5 MB of memory. But if you have to copy the whole address
book for each update, then an immutable version would balloon to 25 MB!

Clojure’s data structures don’t take this naive “copy everything” approach. Instead, all
Clojure data structures are persistent. In this context, persistent means that the data
structures preserve old copies of themselves by efficiently sharing structure between
older and newer versions.

Structural sharing is easiest to visualize with a list. Consider list a with two elements:

 (def a '(1 2))
 -> #'user/a

Then from a, you can create a b with an additional element added:

 (def b (cons 0 a))
 -> #'user/b

b can reuse all of a’s structure, rather than have its own private copy:

All of Clojure’s data structures share structure where possible. For structures other
than simple lists, the mechanics are more complex, of course. If you’re interested in
the details, check out the following articles:

“Ideal Hash Trees”[22] by Phil Bagwell
“Understanding Clojure’s PersistentVector Implementation”[23] by Karl Krukow

Laziness and Recursion
Functional programs make heavy use of recursion and laziness. A recursion occurs
when a function calls itself, either directly or indirectly. With laziness, an expression’s
evaluation is postponed until it’s actually needed. Evaluating a lazy expression is
called realizing the expression.

In Clojure, functions and expressions are not lazy. However, sequences are generally
lazy. Because so much Clojure programming is sequence manipulation, you get many

of the benefits of a fully lazy language. In particular, you can build complex
expressions using lazy sequences and then “pay” only for the elements you actually
need.

Lazy techniques imply pure functions. You never have to worry about when to call a
pure function, since it always returns the same thing. Impure functions, on the other
hand, do not play well with lazy techniques. As a programmer, you must explicitly
control when an impure function is called, because if you call it at some other time, it
may behave differently!

Referential Transparency
Laziness depends on the ability to replace a function call with its result at any time.
Functions that have this ability are called referentially transparent, because calls to
such functions can be replaced without affecting the behavior of the program. In
addition to laziness, referentially transparent functions can also benefit from the
following:

Memoization, automatic caching of results
Automatic parallelization, moving function evaluation to another processor or
machine

Pure functions are referentially transparent by definition. Most other functions are not
referentially transparent, and those that are must be proven safe by code review.

Benefits of FP
Well, that is a lot of terminology, and we promised it would make your code easier to
write, read, test, and compose. Here’s how.

You’ll find functional code easier to write because the relevant information is right in
front of you, in a function’s argument list. You don’t have to worry about global
scope, session scope, application scope, or thread scope. Functional code is easier to
read for exactly the same reason.

Code that is easier to read and write is going to be easier to test, but functional code
brings an additional benefit for testing. As projects get large, it often takes a lot of
effort to set up the right environment to execute a test. This is much less of a problem
with functional code, because there is no relevant environment beyond the function’s
arguments.

Functional code improves reuse. To reuse code, you must be able to do the following:

Find and understand a piece of useful code.
Compose the reusable code with other code.

The readability of functional code helps you find and understand the functions you
need, but the benefit for composing code is even more compelling.

Composability is a hard problem. For years, programmers have used encapsulation to
try to create composable code. Encapsulation creates a firewall, providing access to
data only through a public API.

Encapsulation helps, but it’s nowhere near enough. Even with encapsulated objects,
there are far too many surprising interactions when you try to compose entire systems.
The problem is those darn side effects. Impure functions violate encapsulation, because
they let the outside world reach in (invisibly!) and change the behavior of your code.
Pure functions, on the other hand, are truly encapsulated and composable. Put them
anywhere you want in a system, and they will always behave in the same way.

Guidelines for Use
Clojure takes a unique approach to FP that strikes a balance between academic purity
and the reality of running well on the JVM. That means there’s a lot to learn all at
once. But fear not. If you’re new to FP, the following guidelines will help on your
initial steps toward FP mastery, Clojure-style:

1. Avoid direct recursion. The JVM can’t optimize recursive calls, and Clojure
programs that recurse will blow their stack.

2. Use recur when you’re producing scalar values or small, fixed sequences. Clojure
will optimize calls that use an explicit recur.

3. When producing large or variable-sized sequences, always be lazy. (Do not
recur.) Then, your callers can consume just the part of the sequence they actually
need.

4. Be careful not to realize more of a lazy sequence than you need.

5. Know the sequence library. You can often write code without using recur or the
lazy APIs at all.

6. Subdivide. Divide even simple-seeming problems into smaller pieces, and you’ll
often find solutions in the sequence library that lead to more general, reusable
code.

The last two guidelines are particularly important. If you’re new to FP, you can
translate those to: “Ignore this chapter and just use the techniques in Chapter 3,
Unifying Data with Sequences until you hit a wall.”

Now, let’s get started writing functional code.

How to Be Lazy
Before we get to laziness, we first need to delve into recursion as an approach to
enumerating sequences of values.

Functional programs make great use of recursive definitions. A recursive definition
consists of two parts:

A basis, which explicitly enumerates some members of the sequence
An induction, which provides rules for combining members of the sequence to
produce additional members

Our challenge in this section is converting a recursive definition into working code.
You might do this in several ways:

A simple recursion, using a function that calls itself in some way to implement
the induction step.

A tail recursion, using a function calling itself only at the tail end of its execution.
Tail recursion enables an important optimization.

A lazy sequence that eliminates actual recursion and calculates a value later,
when it’s needed.

Choosing the right approach is important. Implementing a recursive definition poorly
can lead to code that performs terribly, consumes all available stack and fails,
consumes all available heap and fails, or does all of these. In Clojure, being lazy is
often the right approach.

We’ll explore all of these approaches by applying them to the Fibonacci numbers.
Named for the Italian mathematician Leonardo (Fibonacci) of Pisa (c.1170--c.1250),
the Fibonacci numbers were actually known to Indian mathematicians as far back as
200 BC. The Fibonacci numbers have many interesting properties, and they crop up
again and again in algorithms, data structures, and even biology.[24] The Fibonaccis
have a very simple recursive definition:

Basis: F0, the zeroth Fibonacci number, is zero. F1, the first Fibonacci number, is
one.

Induction: For n > 1, Fn equals Fn-1 + Fn-2.

Using this definition, the first 10 Fibonacci numbers are as follows:

 (0 1 1 2 3 5 8 13 21 34)

Let’s begin by implementing the Fibonaccis using a simple recursion. The following
Clojure function will return the nth Fibonacci number:

src/examples/functional.clj

1: ; bad idea
2: (defn stack-consuming-fibo [n]
3: (cond
4: (= n 0) 0
5: (= n 1) 1
6: :else (+ (stack-consuming-fibo (- n 1))
7: (stack-consuming-fibo (- n 2)))))

Lines 4 and 5 define the basis, and line 6 defines the induction. The implementation is
recursive because stack-consuming-fibo calls itself on lines 6 and 7.

Test that stack-consuming-fibo works correctly for small values of n:

 (stack-consuming-fibo 9)
 -> 34

Good so far, but there’s a problem calculating larger Fibonacci numbers such as
F1000000:

 (stack-consuming-fibo 1000000)
 -> StackOverflowError clojure.lang.Numbers.minus (Numbers.java:1837)

Because of the recursion, each call to stack-consuming-fibo for n > 1 begets two more
calls to stack-consuming-fibo. At the JVM level, these calls are translated into method
calls, each of which allocates a data structure called a stack frame.[25]

The stack-consuming-fibo creates a depth of stack frames proportional to n, which
quickly exhausts the JVM stack and causes the StackOverflowError shown earlier. (It
also creates a total number of stack frames that’s exponential in n, so its performance
is terrible even when the stack does not overflow.)

Clojure function calls are designated as stack-consuming because they allocate stack
frames that use up stack space. In Clojure, you should almost always avoid stack-
consuming recursion as shown in stack-consuming-fibo.

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

Tail Recursion
Functional programs can solve the stack-usage problem with tail recursion. A tail-
recursive function is still defined recursively, but the recursion must come at the tail,
that is, at an expression that’s a return value of the function. Languages can then
perform tail-call optimization (TCO), converting tail recursions into iterations that
don’t consume the stack.

The stack-consuming-fibo definition of Fibonacci is not tail recursive, because it calls
add (+) after both calls to stack-consuming-fibo. To make fibo tail recursive, you
must create a function whose arguments carry enough information to move the
induction forward, without any extra “after” work (like an addition) that would push
the recursion out of the tail position. For fibo, such a function needs to know two
Fibonacci numbers, plus an ordinal n that can count down to zero as new Fibonaccis
are calculated. You can write tail-fibo as follows:

src/examples/functional.clj

1: (defn tail-fibo [n]
2: (letfn [(fib
3: [current next n]
4: (if (zero? n)
5: current
6: (fib next (+ current next) (dec n))))]
7: (fib 0N 1N n)))

Line 2 introduces the letfn macro:

 (letfn fnspecs & body) ; fnspecs ==> [(fname [params*] exprs)+]

letfn is like let but is dedicated to creating local functions. Each function declared in a
letfn can call itself or any other function in the same letfn block. Line 3 declares that
fib has three arguments: the current Fibonacci, the next Fibonacci, and the number n
of steps remaining.

Line 5 returns current when there are no steps remaining, and line 6 continues the
calculation, decrementing the remaining steps by one. Finally, line 7 kicks off the
recursion with the basis values 0 and 1, plus the ordinal n of the Fibonacci we’re
looking for.

tail-fibo works for small values of n:

 (tail-fibo 9)

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

 -> 34N

But although it’s tail recursive, it still fails for large n:

 (tail-fibo 1000000)
 -> StackOverflowError java.lang.Integer.numberOfLeadingZeros

(Integer.java:1054)

The problem here is the JVM. While functional languages such as Scheme or Haskell
perform TCO, the JVM doesn’t perform this optimization. The absence of TCO is
unfortunate but not a showstopper for functional programs.

Clojure provides several pragmatic workarounds: explicit self-recursion with recur,
lazy sequences, and explicit mutual recursion with trampoline. We’ll discuss the first
two here and defer the discussion of trampoline, which is a more advanced feature,
until later in the chapter.

Self-recursion with recur
One special (and common) case of recursion that can be optimized away on the JVM
is self-recursion. Fortunately, the tail-fibo is an example: it calls itself directly, not
through some series of intermediate functions.

In Clojure, you can convert a function that tail-calls itself into an explicit self-
recursion with recur. Using this approach, convert tail-fibo into recur-fibo:

src/examples/functional.clj

1: ; better but not great
2: (defn recur-fibo [n]
3: (letfn [(fib
4: [current next n]
5: (if (zero? n)
6: current
7: (recur next (+ current next) (dec n))))]
8: (fib 0N 1N n)))

The critical difference between tail-fibo and recur-fibo is on line 7, where recur
replaces the call to fib.

The recur-fibo won’t consume stack as it calculates Fibonacci numbers and can
calculate Fn for large n if you have the patience:

 (recur-fibo 9)

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

 -> 34N

 (recur-fibo 1000000)
 -> 195 ... 208,982 other digits ... 875N

The complete value of F1000000 is included in the sample code at output/f-1000000.

The recur-fibo calculates one Fibonacci number. But what if you want several?
Calling recur-fibo multiple times would be wasteful, since none of the work from any
call to recur-fibo is cached for the next call. But how many values should be cached?
Which ones? These choices should be made by the caller of the function, not the
implementer.

Ideally, you’d define sequences with an API that makes no reference to the specific
range that a particular client cares about and then let clients pull the range they want
with take and drop. This is exactly what lazy sequences provide.

Lazy Sequences
Lazy sequences are constructed using the macro lazy-seq:

 (lazy-seq & body)

A lazy-seq invokes its body only when needed, that is, when seq is called directly or
indirectly. lazy-seq then caches the result for subsequent calls. You can use lazy-seq to
define a lazy Fibonacci series as follows:

src/examples/functional.clj

1: (defn lazy-seq-fibo
2: ([]
3: (concat [0 1] (lazy-seq-fibo 0N 1N)))
4: ([a b]
5: (let [n (+ a b)]
6: (lazy-seq
7: (cons n (lazy-seq-fibo b n))))))

On line 3, the zero-argument body returns the concatenation of the basis values [0 1]
and then calls the two-argument body to calculate the rest of the values. On line 5, the
two-argument body calculates the next value n in the series, and on line 7 it conses n
onto the rest of the values.

The key is line 6, which makes its body lazy. Without this, the recursive call to lazy-
seq-fibo on line 7 would happen immediately, and lazy-seq-fibo would recurse until it

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

blew the stack. This illustrates the general pattern: wrap the recursive part of a function
body with lazy-seq to replace recursion with laziness.

lazy-seq-fibo works for small values:

 (take 10 (lazy-seq-fibo))
 -> (0 1 1N 2N 3N 5N 8N 13N 21N 34N)

lazy-seq-fibo also works for large values. Use (rem ... 1000) to print only the last three
digits of the one millionth Fibonacci number:

 (rem (nth (lazy-seq-fibo) 1000000) 1000)
 -> 875N

The lazy-seq-fibo approach follows guideline #3, using laziness to implement an
infinite sequence. But as is often the case, you don’t need to explicitly call lazy-seq
yourself. By guideline #5, you can reuse existing sequence library functions that return
lazy sequences. Consider this use of iterate:

 (take 5 (iterate (fn [[a b]] [b (+ a b)]) [0 1]))
 -> ([0 1] [1 1] [1 2] [2 3] [3 5])

The iterate begins with the first pair of Fibonacci numbers: [0 1]. Working by pairs, it
then calculates the Fibonaccis by carrying along just enough information (two values)
to calculate the next value.

The Fibonaccis are simply the first value of each pair. They can be extracted by calling
map first over the entire sequence, leading to the following definition of fibo
suggested by Christophe Grand:

src/examples/functional.clj

 (defn fibo []
 (map first (iterate (fn [[a b]] [b (+ a b)]) [0N 1N])))

fibo returns a lazy sequence because it builds on map and iterate, which also return
lazy sequences. fibo is also simple. fibo is the shortest implementation we’ve seen so
far. But if you’re accustomed to writing imperative, looping code, correctly
choosing fibo over other approaches may not seem simple at all! Learning to think
recursively, lazily, and within the JVM’s limitations on recursion—all at the same time
—can be intimidating. Let the guidelines help you. The Fibonacci numbers are
infinite: guideline #3 correctly predicts that the right approach in Clojure will be a lazy
sequence, and guideline #5 lets the existing sequence functions do most of the work.

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

Lazy definitions consume some stack and heap. But they don’t consume resources
proportional to the size of an entire (possibly infinite!) sequence. Instead, you choose
how many resources to consume when you traverse the sequence. If you want the one
millionth Fibonacci number, you can get it from fibo, without having to consume stack
or heap space for all the previous values.

There’s no such thing as a free lunch. But with lazy sequences, you can have an
infinite menu and pay only for the menu items you’re eating at a given moment. When
writing Clojure programs, you should prefer lazy sequences over loop/recur for any
sequence that varies in size and for any large sequence.

Coming to Realization
Lazy sequences consume significant resources only as they are realized, that is, when a
portion of the sequence is actually instantiated in memory. Clojure works hard to be
lazy and avoid realizing sequences until it’s absolutely necessary. For example, take
returns a lazy sequence and does no realization at all. You can see this by creating a
var to hold, say, the first billion Fibonacci numbers:

 (def lots-o-fibs (take 1000000000 (fibo)))
 -> #'user/lots-o-fibs

The creation of lots-o-fibs returns almost immediately, because it does almost nothing.
If you ever call a function that needs to actually use some values in lots-o-fibs, Clojure
will calculate them. Even then, it’ll do only what’s necessary. For example, the
following will return the 100th Fibonacci number from lots-o-fibs, without calculating
the millions of other numbers that lots-o-fibs promises to provide:

 (nth lots-o-fibs 100)
 -> 354224848179261915075N

Most sequence functions return lazy sequences. If you aren’t sure whether a function
returns a lazy sequence, the function’s documentation string typically will tell you the
answer:

 (doc take)

 clojure.core/take
 ([n coll])
 Returns a lazy seq of the first n items in coll, or all items if
 there are fewer than n.

The REPL, however, is not lazy. The printer used by the REPL will, by default, print

the entirety of a collection. That’s why we stuffed the first billion Fibonaccis into lots-
o-fibs, instead of evaluating them at the REPL. Don’t enter the following at the REPL:

 ; don't do this
 (take 1000000000 (fibo))

If you enter the previous expression, the printer will attempt to print a billion
Fibonacci numbers, realizing the entire collection as it goes. You’ll probably get bored
and exit the REPL before Clojure runs out of memory.

As a convenience for working with lazy sequences, you can configure how many items
the printer will print by setting the value of *print-length*:

 (set! *print-length* 10)
 -> 10

For collections with more than 10 items, the printer will now print only the first 10
followed by an ellipsis. So, you can safely print a billion fibos:

 (take 1000000000 (fibo))
 -> (0N 1N 1N 2N 3N 5N 8N 13N 21N 34N ...)

Or even all the fibos:

 (fibo)
 -> (0N 1N 1N 2N 3N 5N 8N 13N 21N 34N ...)

Lazy sequences are wonderful. They do only what’s needed, and for the most part, you
don’t have to worry about them. If you ever want to force a sequence to be fully
realized, you can use either doall or dorun, discussed in Lazy and Infinite Sequences .

Losing Your Head
There’s one last thing to consider when working with lazy sequences. Lazy sequences
let you define a large (possibly infinite) sequence and then work with a small part of
that sequence in memory at a given moment. This clever ploy will fail if you (or some
API) unintentionally hold a reference to the part of the sequence you no longer care
about.

The most common way this can happen is if you accidentally hold the head (first item)
of a sequence. In the examples in previous sections, each variant of the Fibonacci
numbers was defined as a function returning a sequence, not the sequence itself.

You could define the sequence directly as a top-level var:

src/examples/functional.clj

 ; holds the head (avoid!)
 (def head-fibo (lazy-cat [0N 1N] (map + head-fibo (rest head-fibo))))

This definition uses lazy-cat, which is like concat except that the arguments are
evaluated only when needed. This is a very pretty definition, in that it defines the
recursion by mapping a sum over (each element of the Fibonaccis) and (each element
of the rest of the Fibonaccis).

head-fibo works great for small Fibonacci numbers:

 (take 10 head-fibo)
 -> (0N 1N 1N 2N 3N 5N 8N 13N 21N 34N)

but not so well for huge ones:

 (nth head-fibo 1000000)
 -> java.lang.OutOfMemoryError: GC overhead limit exceeded

The problem is that the top-level var head-fibo holds the head of the collection. This
prevents the garbage collector from reclaiming elements of the sequence after you’ve
moved past those elements. So, any part of the Fibonacci sequence that you actually
use gets cached for the life of the value referenced by head-fibo, which is likely to be
the life of the program.

Unless you want to cache a sequence as you traverse it, you must be careful not to
keep a reference to the head of the sequence. As the head-fibo example demonstrates,
you should normally expose lazy sequences as a function that returns the sequence,
not as a var that contains the sequence. If a caller of your function wants an explicit
cache, the caller can always create its own var. With lazy sequences, losing your head
is often a good idea.

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

Lazier Than Lazy
Clojure’s lazy sequences are a great form of laziness at the language level. As a
programmer, you can be even lazier by finding solutions that don’t require explicit
sequence manipulation at all. You can often combine existing sequence functions to
solve a problem, without having to get your hands dirty at the level of recur or lazy
sequences.

As an example of this, let’s implement several solutions to the following problem. You
are given a sequence of coin-toss results, where heads is :h and tails is :t:

 [:h :t :t :h :h :h]

How many times in the sequence does heads come up twice in a row? In the previous
example, the answer is two. Toss 3 and toss 4 are both heads, and toss 4 and toss 5 are
both heads.

The sequence of coin tosses might be very large, but it’ll be finite. Since you’re
looking for a scalar answer (a count), by rule 2, it’s acceptable to use recur:

src/examples/functional.clj

1: (defn count-heads-pairs [coll]
2: (loop [cnt 0 coll coll]
3: (if (empty? coll)
4: cnt
5: (recur (if (= :h (first coll) (second coll))
6: (inc cnt)
7: cnt)
8: (rest coll)))))

Since the purpose of the function is to count something, the loop introduces a cnt
binding, initially zero on line 2. The loop also introduces its own binding for the coll,
so that we can shrink the coll each time through the recur. Line 3 provides the basis
for the recurrence. If a sequence of coin tosses is empty, it certainly has zero runs of
two heads in a row.

Line 5 is the meat of the function, incrementing the cnt by one if the first and second
items of coll are both heads (:h).

Try a few inputs to see that count-heads-pairs works as advertised:

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

 (count-heads-pairs [:h :h :h :t :h])
 -> 2

 (count-heads-pairs [:h :t :h :t :h])
 -> 0

Although count-heads-pairs works, it fails as code prose. The key notion of “two in a
rowness” is obscured by the boilerplate for loop/recur. To fix this, you need to use
guidelines 5 and 6, subdividing the problem to take advantage of Clojure’s sequence
library.

Transforming the Input Sequence
The first problem you encounter is that almost all the sequence functions do something
to each element in a sequence in turn. This doesn’t help us at all, since we want to look
at each element in the context of its immediate neighbors. So, let’s transform the
sequence. When you see this:

 [:h :t :t :h :h :h]

you should mentally translate that into a sequence of every adjacent pair:

 [[:h :t] [:t :t] [:t :h] [:h :h] [:h :h]]

Write a function named by-pairs that performs this transformation. Because the output
of by-pairs varies based on the size of its input, according to rule 3, you should build
this sequence lazily:

src/examples/functional.clj

1: ; overly complex, better approaches follow...
2: (defn by-pairs [coll]
3: (let [take-pair (fn [c]
4: (when (next c) (take 2 c)))]
5: (lazy-seq
6: (when-let [pair (seq (take-pair coll))]
7: (cons pair (by-pairs (rest coll)))))))

Line 3 defines a function that takes the first pair of elements from the collection. Line
5 ensures that the recursion is evaluated lazily.

Line 6 is a conditional: if the next pair doesn’t contain two elements, we must be
(almost) at the end of the list, and we implicitly terminate. If we do get two elements,
then on line 7, we continue building the sequence by consing our pair onto the pairs to

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

be had from the rest of the collection.

Check that by-pairs works:

 (by-pairs [:h :t :t :h :h :h])
 -> ((:h :t) (:t :t) (:t :h) (:h :h) (:h :h))

Now that we can think of the coin tosses as a sequence of pairs of results, it’s easy to
describe count-heads-pairs in English:

“Count the pairs of results that are all heads.”

This English description translates directly into existing sequence library functions:
“Count” is count, of course, and “that are all heads” suggests a filter:

src/examples/functional.clj

 (defn count-heads-pairs [coll]
 (count (filter (fn [pair] (every? #(= :h %) pair))
 (by-pairs coll))))

This is much more expressive than the recur-based implementation, and it makes clear
that we’re counting all the adjacent pairs of heads. But we can make things even
simpler. Clojure already has a more general version of by-pairs named partition:

 (partition size step? coll)

partition breaks a collection into chunks of size size. So, you could break a heads/tails
vector into a sequence of pairs:

 (partition 2 [:h :t :t :h :h :h])
 -> ((:h :t) (:t :h) (:h :h))

This isn’t quite the same as by-pairs, which yields overlapping pairs. But partition can
do overlaps, too. The optional step argument determines how far partition moves
down the collection before starting its next chunk. If not specified, step is the same as
size. To make partition work like by-pairs, set size to 2 and set step to 1:

 (partition 2 1 [:h :t :t :h :h :h])
 -> ((:h :t) (:t :t) (:t :h) (:h :h) (:h :h))

 (by-pairs [:h :t :t :h :h :h])
 -> ((:h :t) (:t :t) (:t :h) (:h :h) (:h :h))

Another possible area of improvement is the count/filter idiom used to count the pairs

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

that are both heads. This combination comes up often enough that it’s worth
encapsulating in a count-if function:

src/examples/functional.clj

 (def ^{:doc "Count items matching a filter"}
 count-if (comp count filter))

comp is used to compose two or more functions:

 (comp f & fs)

The composed function is a new function that applies the rightmost function to its
arguments, the next-rightmost function to that result, and so on. So, count-if will first
filter and then count the results of the filter:

 (count-if odd? [1 2 3 4 5])
 -> 3

Finally, you can use count-if and partition to create a count-runs function that’s more
general than count-heads-pairs:

src/examples/functional.clj

 (defn count-runs
 "Count runs of length n where pred is true in coll."
 [n pred coll]
 (count-if #(every? pred %) (partition n 1 coll)))

count-runs is a winning combination: both simpler and more general than the previous
versions of count-heads-pairs. You can use it to count pairs of heads:

 (count-runs 2 #(= % :h) [:h :t :t :h :h :h])
 -> 2

But you can just as easily use it to count pairs of tails:

 (count-runs 2 #(= % :t) [:h :t :t :h :h :h])
 -> 1

Or, instead of pairs, how about runs of three heads in a row?

 (count-runs 3 #(= % :h) [:h :t :t :h :h :h])
 -> 1

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

Currying and Partial Application
If you still want to have a function named count-heads-pairs, you can implement it in
terms of count-runs:

src/examples/functional.clj

 (def ^{:doc "Count runs of length two that are both heads"}
 count-heads-pairs (partial count-runs 2 #(= % :h)))

This version of count-heads-pairs builds a new function using partial:

 (partial f & partial-args)

partial performs a partial application of a function. You specify a function f and part
of the argument list when you perform the partial. You specify the remainder of the
argument list later, when you call the function created by partial. So, the following:

 (partial count-runs 1 #(= % :h))

is a more expressive way of saying this:

 (fn [coll] (count-runs 1 #(= % :h) coll))

Partial application is similar but not identical to currying.

When you curry a function, you get a new function that takes one argument and
returns the original function with that one argument fixed. (Curry is named for Haskell
Curry, an American logician best known for his work in combinatory logic.) If Clojure
had a curry, it might be implemented like this:

 ; almost a curry
 (defn faux-curry [& args] (apply partial partial args))

One use of curry is partial application. Here is partial application in Clojure:

 (def add-3 (partial + 3))
 (add-3 7)
 -> 10

And here is partial application using our faux-curry:

 (def add-3 ((faux-curry +) 3))
 (add-3 7)
 -> 10

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

If all you want is partial application, currying is just an intermediate step. Our faux-
curry is not a real curry. A real curry would return a result, not a function of no
arguments, once all the arguments were fixed. We can see the difference here, using
the function true?, which takes only one argument:

 ; faux curry
 ((faux-curry true?) (= 1 1))

 ; if the curry were real
 ((curry true?) (= 1 1))
 -> true

Since Clojure functions can have variable-length argument lists, Clojure can’t know
when all the arguments are fixed. But you, the programmer, do know when you’re
done adding arguments. When you’ve curried as many arguments as you want, just
invoke the function. That amounts to adding an extra set of parentheses around the
earlier expression:

 (((faux-curry true?) (= 1 1)))
 -> true

The absence of curry from Clojure is not a major problem, since partial is available,
and that’s what people generally want out of curry anyway. In fact, some programmers
use the terms currying and partial application interchangeably.

You’ve seen a lot of new forms in this section. Don’t let all the details obscure the key
idea: by combining existing functions from the sequence library, you were able to
create a solution that was both simpler and more general than the direct approach. And
you didn’t have to worry about laziness or recursion at all. Instead, you worked at a
higher level of abstraction and let Clojure deal with laziness and recursion for you.

Recursion Revisited
Clojure works very hard to balance the power of functional programming with the
reality of the Java Virtual Machine. One example of this is the well-motivated choice
of explicit TCO through loop/recur.

But blending the best of two worlds always runs the risk of unpleasant compromises,
and it makes sense to ask the question, “Does Clojure contain hidden design
compromises that, while not obvious on day one, will bite me later?”

This question is never fully answerable for any language, but let’s consider it by
exploring some more complex recursions. First, we’ll look at mutual recursion.

A mutual recursion occurs when the recursion bounces between two or more functions.
Instead of A calls A calls A, we have A calls B calls A again. As a simple example,
you could define my-odd? and my-even? using mutual recursion:

src/examples/functional.clj

 (declare my-odd? my-even?)

 (defn my-odd? [n]
 (if (= n 0)
 false
 (my-even? (dec n))))

 (defn my-even? [n]
 (if (= n 0)
 true
 (my-odd? (dec n))))

Because my-odd? and my-even? each call the other, you need to create both vars
before you define the functions. You could do this with def, but the declare macro lets
you create both vars (with no initial binding) in a single line of code.

Verify that my-odd? and my-even? work for small values:

 (map my-even? (range 10))
 -> (true false true false true false true false true false)

 (map my-odd? (range 10))
 -> (false true false true false true false true false true)

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

my-odd? and my-even? consume stack frames proportional to the size of their
argument, so they will fail with large numbers.

 (my-even? (* 1000 1000 1000))
 -> StackOverflowError clojure.lang.Numbers$LongOps.equiv

(Numbers.java:490)

This is similar to the problem that motivated the introduction of recur. But you can’t
use recur to fix it, because recur works with self-recursion, not mutual recursion. Of
course, odd/even can be implemented more efficiently without recursion anyway.
Clojure’s implementation uses bit-and (bitwise and) to implement odd? and even?:

 ; from core.clj
 (defn even? [n] (zero? (bit-and n 1)))
 (defn odd? [n] (not (even? n)))

We picked odd/even for its simplicity. Other recursive problems are not so simple and
don’t have an elegant nonrecursive solution. We’ll examine four approaches you can
use to solve such problems:

Converting to self-recursion
Trampolining a mutual recursion
Replacing recursion with laziness
Shortcutting recursion with memoization

Converting to Self-recursion
Mutual recursion is often a nice way to model separate but related concepts. For
example, oddness and evenness are separate concepts but clearly related to one
another.

You can convert a mutual recursion to a self-recursion by coming up with a single
abstraction that deals with multiple concepts simultaneously. For example, you can
think of oddness and evenness in terms of a single concept: parity. Define a parity
function that uses recur and returns 0 for even numbers and 1 for odd numbers:

src/examples/functional.clj

 (defn parity [n]
 (loop [n n par 0]
 (if (= n 0)
 par
 (recur (dec n) (- 1 par)))))

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

Test that parity works for small values:

 (map parity (range 10))
 -> (0 1 0 1 0 1 0 1 0 1)

At this point, you can trivially implement my-odd? and my-even? in terms of parity:

src/examples/functional.clj

 (defn my-even? [n] (= 0 (parity n)))
 (defn my-odd? [n] (= 1 (parity n)))

Parity is a straightforward concept. Unfortunately, many mutual recursions will not
simplify into an elegant self-recursion. If you try to convert a mutual recursion into a
self-recursion and you find the resulting code to be full of conditional expressions that
obfuscate the definition, then don’t use this approach.

Trampolining Mutual Recursion
A trampoline is a technique for optimizing mutual recursion. A trampoline is like an
after-the-fact recur, imposed by the caller of a function instead of the implementer.
Since the caller can call more than one function inside a trampoline, trampolines can
optimize mutual recursion.

Clojure’s trampoline function invokes one of your mutually recursive functions:

 (trampoline f & partial-args)

If the return value is not a function, then a trampoline works just like calling the
function directly. Try trampolining a few simple Clojure functions:

 (trampoline list)
 -> ()
 (trampoline + 1 2)
 -> 3

If the return value is a function, then trampoline assumes you want to call it
recursively and calls it for you. trampoline manages its own recur, so it will keep
calling your function until it stops returning functions.

Back in Tail Recursion , you implemented a tail-fibo function. You saw how the
function consumed stack space and replaced the tail recursion with a recur. Now we
have another option. You can take the code of tail-fibo and prepare it for trampolining
by wrapping the recursive return case inside a function.

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj

src/examples/trampoline.clj

1: ; Example only. Don't write code like this.
- (defn trampoline-fibo [n]
- (let [fib (fn fib [f-2 f-1 current]
- (let [f (+ f-2 f-1)]
5: (if (= n current)
- f
- #(fib f-1 f (inc current)))))]
- (cond
- (= n 0) 0
10: (= n 1) 1
- :else (fib 0N 1 2))))

The only difference between this and the original version of tail-fibo is the initial # on
line 7. Try bouncing trampoline-fibo on a trampoline:

 (trampoline trampoline-fibo 9)
 -> 34N

Since trampoline does a recur, it can handle large inputs just fine, without throwing a
StackOverflowError:

 (rem (trampoline trampoline-fibo 1000000) 1000)
 -> 875N

We’ve ported tail-fibo to use trampoline to compare and contrast trampoline and
recur. For self-recursions like trampoline-fibo, trampoline offers no advantage, and
you should prefer recur. But with mutual recursion, trampoline comes into its own.

Consider the mutually recursive definition of my-odd? and my-even?, which we
presented at the beginning of Recursion Revisited . You can convert these broken,
stack-consuming implementations to use trampoline, with the same approach you
used to convert tail-fibo: prepend a # to any recursive tail calls so that they return a
function to produce the value, rather than the value itself:

src/examples/trampoline.clj

1: (declare my-odd? my-even?)
-
- (defn my-odd? [n]
- (if (= n 0)
5: false
- #(my-even? (dec n))))

http://media.pragprog.com/titles/shcloj3/code/src/examples/trampoline.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/trampoline.clj

-
- (defn my-even? [n]
- (if (= n 0)
10: true
- #(my-odd? (dec n))))

The only difference from the original implementation is the function wrappers on lines
6 and 11. With this change in place, you can trampoline large values of n without
blowing the stack:

 (trampoline my-even? 1000000)
 -> true

A trampoline is a special-purpose solution to a specific problem. It requires doctoring
your original functions to return a different type to indicate recursion. If one of the
other techniques presented here provides a more elegant implementation for a
particular recursion, that’s great. If not, you’ll be happy to have trampoline in your
box of tools. In practice, many Clojure programmers never encounter a case requiring
trampoline at all.

Replacing Recursion with Laziness
Of all the techniques for eliminating or optimizing recursion discussed in this chapter,
laziness is the one you’ll probably use most often.

For our example, we’ll implement the replace function developed by Eugene
Wallingford to demonstrate mutual recursion. (See
http://www.cs.uni.edu/~wallingf/patterns/recursion.html.)

replace works with an s-list data structure, which is a list that can contain both
symbols and lists of symbols. replace takes an s-list, an oldsym, and a newsym and
replaces all occurrences of oldsym with newsym. For example, this call to replace
replaces all occurrences of b with a:

 (replace '((a b) (((b g r) (f r)) c (d e)) b) 'b 'a)
 -> ((a a) (((a g r) (f r)) c (d e)) a)

The following is a fairly literal translation of the Scheme implementation from
Wallingford’s paper. We’ve converted from Scheme functions to Clojure functions,
changed the name to replace-symbol to avoid collision with Clojure’s replace, and
shortened names to better fit the printed page, but otherwise, we’ve preserved the
structure of the original:

http://www.cs.uni.edu/~wallingf/patterns/recursion.html

src/examples/wallingford.clj

 ; overly-literal port, do not use
 (declare replace-symbol replace-symbol-expression)
 (defn replace-symbol [coll oldsym newsym]
 (if (empty? coll)
 ()
 (cons (replace-symbol-expression
 (first coll) oldsym newsym)
 (replace-symbol
 (rest coll) oldsym newsym))))
 (defn replace-symbol-expression [symbol-expr oldsym newsym]
 (if (symbol? symbol-expr)
 (if (= symbol-expr oldsym)
 newsym
 symbol-expr)
 (replace-symbol symbol-expr oldsym newsym)))

The two functions replace-symbol and replace-symbol-expression are mutually
recursive, so a deeply nested structure could blow the stack. To demonstrate the
problem, create a deeply-nested function that builds deeply nested lists containing a
single bottom element:

src/examples/replace_symbol.clj

 (defn deeply-nested [n]
 (loop [n n
 result '(bottom)]
 (if (= n 0)
 result
 (recur (dec n) (list result)))))

Try deeply-nested for a few small values of n:

 (deeply-nested 5)
 -> ((((((bottom))))))

 (deeply-nested 25)
 -> (((((((((((((((((((((((((bottom)))))))))))))))))))))))))

Clojure provides a *print-level* that controls how deeply the Clojure printer will go
into a nested data structure. Set the *print-level* to a modest value so that the printer
doesn’t go crazy trying to print a deeply nested structure. You’ll see that when we nest
deeper, the printer simply prints a # and stops:

http://media.pragprog.com/titles/shcloj3/code/src/examples/wallingford.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/replace_symbol.clj

 (set! *print-level* 25)
 -> 25

 (deeply-nested 5)
 -> ((((((bottom))))))

 (deeply-nested 25)
 -> (((((((((((((((((((((((((#)))))))))))))))))))))))))

Now, try to use replace-symbol to change bottom to deepest for different levels of
nesting. You’ll see that large levels blow the stack. Depending on your JVM
implementation, you may need a larger value than the 10000 shown here:

 (replace-symbol (deeply-nested 5) 'bottom 'deepest)
 -> ((((((deepest))))))

 (replace-symbol (deeply-nested 10000) 'bottom 'deepest)
 -> java.lang.StackOverflowError

All of the recursive calls to replace-symbol are inside a cons. To break the recursion,
all you have to do is wrap the recursion with lazy-seq. It’s really that simple. You can
break a sequence-generating recursion by wrapping it with a lazy-seq. Here’s the
improved version. Since the transition to laziness was so simple, we couldn’t resist the
temptation to make the function more Clojure-ish in another way as well:

src/examples/replace_symbol.clj

1: (defn- coll-or-scalar [x & _] (if (coll? x) :collection :scalar))
2: (defmulti replace-symbol coll-or-scalar)
3: (defmethod replace-symbol :collection [coll oldsym newsym]
4: (lazy-seq
5: (when (seq coll)
6: (cons (replace-symbol (first coll) oldsym newsym)
7: (replace-symbol (rest coll) oldsym newsym)))))
8: (defmethod replace-symbol :scalar [obj oldsym newsym]
9: (if (= obj oldsym) newsym obj))

On line 4, the lazy-seq breaks the recursion, preventing stack overflow on deeply
nested structures. The other improvement is on line 2. Rather than have two different
functions to deal with symbols and lists, there’s a single multimethod replace-symbol
with one method for lists and another for symbols. (Multimethods are covered in detail
in Chapter 9, Multimethods .) This gets rid of an if form and improves readability.

Make sure the improved replace-symbol can handle deep nesting:

http://media.pragprog.com/titles/shcloj3/code/src/examples/replace_symbol.clj

 (replace-symbol (deeply-nested 10000) 'bottom 'deepest)
 -> (((((((((((((((((((((((((#)))))))))))))))))))))))))

Laziness is a powerful ally. You can often write recursive and even mutually recursive
functions and then break the recursion with laziness.

Shortcutting Recursion with Memoization
To demonstrate a more complex mutual recursion, let’s look at the Hofstadter Female
and Male sequences. The first Hofstadter sequences were described in Gödel, Escher,
Bach: An Eternal Golden Braid [Hof99]. The Female and Male sequences are defined
as follows:[26]

F(0) = 1; M(0) = 0

F(n) = n - M(F(n-1)), n > 0

M(n) = n - F(M(n-1)), n > 0

This suggests a straightforward definition in Clojure:

src/examples/male_female.clj

 ; do not use these directly
 (declare m f)
 (defn m [n]
 (if (zero? n)
 0
 (- n (f (m (dec n))))))
 (defn f [n]
 (if (zero? n)
 1
 (- n (m (f (dec n))))))

The Clojure definition is easy to read and closely parallels the mathematical definition.
However, it performs terribly for large values of n. Each value in the sequence
requires calculating two other values from scratch, which in turn requires calculating
two other values from scratch. On one of our MacBook Pro computers,[27] it takes
more than half a minute to calculate (m 250):

 (time (m 250))
 "Elapsed time: 38443.902083 msecs"
 -> 155

http://media.pragprog.com/titles/shcloj3/code/src/examples/male_female.clj

Is it possible to preserve the clean, mutually recursive definition and have decent
performance? Yes, with a little help from memoization. Memoization trades space for
time by caching the results of past calculations. When you call a memoized function, it
first checks your input against a map of previous inputs and their outputs. If it finds the
input in the map, it can return the output immediately, without having to perform the
calculation again.

Rebind m and f to memoized versions of themselves, using Clojure’s memoize
function:

src/examples/memoized_male_female.clj

 (def m (memoize m))
 (def f (memoize f))

Now Clojure needs to calculate F and M only once for each n. The speedup is
enormous. Calculating (m 250) is thousands of times faster:

 (time (m 250))
 "Elapsed time: 5.190739 msecs"
 -> 155

And, of course, once the memoization cache is built, “calculation” of a cached value is
almost instantaneous:

 (time (m 250))
 "Elapsed time: 0.065877 msecs"
 -> 155

Memoization alone is not enough, however. Memoization shortcuts the recursion only
if the memoization cache is already populated. If you start with an empty cache and
ask for m or f of a large number, you’ll blow the stack before the cache can be built:

 (m 10000)
 -> java.lang.StackOverflowError

The final trick is to guarantee that the cache is built from the ground up by exposing
sequences, instead of functions. Create m-seq and f-seq by mapping m and f over the
whole numbers:

src/examples/male_female_seq.clj

 (def m-seq (map m (iterate inc 0)))
 (def f-seq (map f (iterate inc 0)))

http://media.pragprog.com/titles/shcloj3/code/src/examples/memoized_male_female.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/male_female_seq.clj

Now callers can get M(n) or F(n) by taking the nth value from a sequence:

 (nth m-seq 250)
 -> 155

The approach is quite fast, even for larger values of n:

 (time (nth m-seq 10000))
 "Elapsed time: 0.735 msecs"
 -> 6180

The approach we used here is as follows:

Define a mutually recursive function in a natural way.

Use memoization to shortcut recursion for values that have already been
calculated.

Expose a sequence so that dependent values are cached before they’re needed.

This approach is heap consuming, in that it caches all previously seen values. If this is
a problem, in some situations, you can eliminate it by selecting a more complex
caching policy.

We’ve spent much of this chapter exploring different techniques for implementing and
leveraging laziness. However, Clojure also provides a range of solutions for eager
evaluation of transformations over collections. Next, we’ll explore when these are
preferred and how to perform eager transformations.

Eager Transformations
While lazy sequences are the right solution in many cases, they’re not the best answer
in every case. An eager approach can be better when we wish to construct an output
collection rather than a sequence, optimize memory and performance for
transformations of large collections, or control external resources.

Producing Output Collections
Sequence transformations produce output only as needed, which allows us to avoid
unnecessary work and even to work with infinite sequences. However, it’s also
common to encounter situations where we want our output to be a persistent
collection, not a sequence. In this case, we want all of the transformation to be
completed, so we won’t get any advantage from laziness.

For example, consider applying a function to a sequence to produce an output vector.
In this case we’d need to apply a final vec function to transfer the elements of the
sequence back into a collection:

src/examples/eager.clj

 (defn square [x] (* x x))

 (defn sum-squares-seq [n]
 (vec (map square (range n))))

Recall that sequences cache the result of their evaluation so that they’re safe,
immutable values, just like collections. This example will produce an input sequence
(from the range), which stores the values in memory, then the output of the map,
which stores another sequence of values, and then the final output vector. Sequences
will share values if they are the same across sequences (as they are immutable), but
you’ll have three times as much sequence overhead for the objects holding the values.

Instead, we can perform the intermediate transformation on the input collection values
and place the result directly into the output vector using into with a map transducer.
Let’s first see what that looks like before we discuss what it means:

src/examples/eager.clj

 (defn sum-squares
 [n]
 (into [] (map square) (range n)))

http://media.pragprog.com/titles/shcloj3/code/src/examples/eager.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/eager.clj

Here the call to into takes three arguments: the output collection, the transformation,
and the input collection. The transformation here is a transducer. Many of the
sequence functions (like map) can be called without their input collection argument to
return a transducer. A transducer is a function that captures the essence of a collection
transformation without tying it to the form of either the input collection or the output
collection.

The into provides the elements from the input range to the map transformation and
then adds the results directly into the output collection. This happens eagerly and
returns the final vector, avoiding the creation of the intermediate lazy sequences,
which are just overhead if we know the output target is a collection.

In the next section, we’ll see a more complicated example and examine the
performance implications more closely.

Optimizing Performance
In the previous example we saw the difference between a single sequence
transformation and a single transducer. We can also compose transducers and apply
multiple transformations within into in a single pass over the input.

Imagine you want to find all of the predicate functions in the namespaces we’ve
loaded so far. Predicate functions typically end in ?, so we can find all the loaded
namespaces, then find their public vars, filter down to just those ending in ?, and
finally convert them to friendly names. Using sequences, we often chain
transformations together with ->>:

src/examples/eager.clj

 (defn preds-seq []
 (->> (all-ns)
 (map ns-publics)
 (mapcat vals)
 (filter #(clojure.string/ends-with? % "?"))
 (map #(str (.-sym %)))
 vec))

Each step of this transformation creates a sequence, which caches the intermediate
values of the sequence. Finally, at the end we collect the result into a vector.

Transducers can be composed in a similarly pipelined fashion using comp.
Transducers are composed in a stack-like fashion, which means that comp combines

http://media.pragprog.com/titles/shcloj3/code/src/examples/eager.clj

them left-to-right, just like ->>. Using chained transducers with into looks like this
equivalent function:

src/examples/eager.clj

 (defn preds []
 (into []
 (comp (map ns-publics)
 (mapcat vals)
 (filter #(clojure.string/ends-with? % "?"))
 (map #(str (.-sym %))))
 (all-ns)))

The sequence implementation creates four intermediate sequences. The transducer
implementation composes the four transformations into a single combined
transformation and applies it during a single traversal of the (all-ns) input sequence. It
then places the results directly into the output vector. Removing the intermediate
sequences can result in a significant reduction in memory usage, particularly if the size
of the input collection is large or the number of transformations is large.

The transducer version can also take advantage of some extra optimizations. First, if
the input collection is reducible (that is, it knows how to perform a reduce on itself),
then the resulting compiled code is often far more efficient. Here we can’t take
advantage of this, but in the sum of squares example, range was a reducible collection.

Secondly, some Clojure collections can be more efficiently bulk loaded using
transients. Transients temporarily make an immutable collection mutable while adding
values, then switch the collection back to a normal immutable collection when done.
This happens in a constrained scope such that users are never exposed to the mutable
version. into (and some other transducer aware functions) automatically takes
advantage of this optimization.

Now that you’ve seen some of the performance advantages of doing eager
transformations with transducers, let’s consider how laziness complicates managment
of external resources and how eager transformation can help.

Managing External Resources
When data is read from external resources like files, databases, or web services, it’s
tempting to return a lazy sequence so we can begin processing the data as it’s read:

src/examples/eager.clj

http://media.pragprog.com/titles/shcloj3/code/src/examples/eager.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/eager.clj

 (defn non-blank? [s]
 (not (clojure.string/blank? s)))

 (defn non-blank-lines-seq [file-name]
 (let [reader (clojure.java.io/reader file-name)]
 (filter non-blank? (line-seq reader))))

The problem here is that the reader is not being closed. This resource is being left
open and stranded in this code. Beyond that, it’s not clear when it could be closed,
because we need to wait for the processing of the last line in the lazy sequence of lines.
Another approach is to eagerly process all of the lines, then close the resource before
returning:

src/examples/eager.clj

 (defn non-blank-lines [file-name]
 (with-open [reader (clojure.java.io/reader file-name)]
 (into [] (filter non-blank?) (line-seq reader))))

This solves the dangling resource problem but only by eagerly creating the entire
vector of non-blank lines and returning it. That’s fine for small files but is a recipe for
an eventual OutOfMemoryError with a sufficiently large file. What we really want is
to process the file, without the caching aspects of lazy sequences, and to know when
the input has been exhausted so that the reader can be closed.

First let’s refactor the non-blank-lines function to take a reader and return an eduction:

src/examples/eager.clj

 (defn non-blank-lines-eduction [reader]
 (eduction (filter non-blank?) (line-seq reader)))

An eduction is a suspended transformation (like a sequence), but it processes the entire
input each time its asked (usually just once). Because it’s processed anew each time,
there’s no caching as with a sequence. Instead, the transformation is just applied to the
input to produce an output in a full pass through the data, usually performed with a
reduce (when the output is a collection) or an into (when the output is a single
computed value). For example, we can use non-blank-lines-eduction to count lines:

src/examples/eager.clj

 (defn line-count [file-name]
 (with-open [reader (clojure.java.io/reader file-name)]

http://media.pragprog.com/titles/shcloj3/code/src/examples/eager.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/eager.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/eager.clj

 (reduce (fn [cnt el] (inc cnt)) 0 (non-blank-lines-eduction
reader))))

In line-count, we first create the reader in a with-open block, which will
automatically close the reader before returning the result of the body. Next we process
the eduction in the context of a reduce. The eduction processes each line and then
releases the associated memory, so the eduction will hold only one line in memory at a
time.

Transducers and eductions allow us to choose exactly when an input source is
processed and thus know when the external resource is done and ready to release. With
lazy sequences, it’s much harder to know when processing is “done” and it’s time to
release.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Wrapping Up
In this chapter you’ve seen how Clojure’s support for functional programming strikes
a well-motivated balance between academic purity and effectiveness on the Java
Virtual Machine. Clojure provides a wide variety of techniques including self-
recursion with recur, mutual recursion with trampoline, lazy sequences, and
memoization.

Better still, for a wide variety of everyday programming tasks, you can use the
sequence library without ever having to define your own explicit recursions of lazy
sequences. Functions like partition create clean, expressive solutions that are much
easier to write.

Finally, we saw how Clojure provides eager approaches as a companion to lazy
sequences for use cases where eager evaluation is better suited. Transducers provide
fast, composable transformations that can be used in a variety of situations to produce
output collections, improve performance, and manage external resources.

At this point, you’ve seen the core of Clojure—the syntax, immutable collections, the
sequence abstraction, functional programming, and recursion. With the next chapter,
we’ll begin adding additional features. These features all build on top of the core ideas
of immutable data and functional transformation. We’ll start with spec, a Clojure
library for describing the structure of data and functions.

Footnotes

http://norvig.com/21-days.html

http://lampwww.epfl.ch/papers/idealhashtrees.pdf

http://tinyurl.com/clojure-persistent-vector

http://en.wikipedia.org/wiki/Fibonacci_number

http://tinyurl.com/jvm-spec-toc

http://en.wikipedia.org/wiki/Hofstadter_sequence

3.06 GHz Intel Core 2 Duo, 4 GB 667 MHz DDR2 SDRAM, Ubuntu 10.10, SSD

Copyright © 2018, The Pragmatic Bookshelf.

http://norvig.com/21-days.html
http://lampwww.epfl.ch/papers/idealhashtrees.pdf
http://tinyurl.com/clojure-persistent-vector
http://en.wikipedia.org/wiki/Fibonacci_number
http://tinyurl.com/jvm-spec-toc
http://en.wikipedia.org/wiki/Hofstadter_sequence

Chapter 5

Specifications

Statically typed languages like Java create unique, named data structures (classes) for
every unit of data in a program. Clojure is dynamically typed and instead relies on
reusing a few generic collection types (vectors, maps, sets, lists, and sequences) to
represent a program’s data. This approach yields tremendous opportunities for code
reuse, simplicity, generality, and extension.

However, one consequence of this approach is that functions in a Clojure program lack
the explicit types that programmers in a statically typed language rely on as signposts
to understand a piece of code.

For example, a Java program might have a function that takes a recipe ingredient and
scales the quantity for a larger recipe. In Java, we would define an Ingredient class
and Unit class, and the method might look like this:

 public class Ingredient {
 private String name;
 private double quantity;
 private Unit unit;

 // ...

 public static Ingredient scale(Ingredient ingredient, double factor) {
 ingredient.setQuantity(ingredient.getQuantity() * factor);
 return ingredient;
 }
 }

In a Clojure program, an ingredient might just be a map with some well-known keys.
A scale function would then take and return a map without ever mentioning any
explicit types:

src/examples/spec.clj

http://media.pragprog.com/titles/shcloj3/code/src/examples/spec.clj

 (defn scale-ingredient [ingredient factor]
 (update ingredient :quantity * factor))

This code is preferable to the Java version in several ways. It takes and returns
immutable values, rather than update mutable state, so it’s easier to reason about and
inherently thread-safe by default. Also, the ingredient maps are just collections of
attributes that can easily evolve over the life of a program, rather than being trapped
behind the custom API of a Java class. However, one thing the Clojure code is lacking
is explicit information about the expected structure of ingredient. We need to infer the
structure from documentation or other parts of the program.

In Clojure 1.9, Clojure introduced the spec library, which allows us to create “specs”
that describe the structure of our data, and the inputs and outputs of our functions. The
actual code we write is the same—it still uses generic collections and generic
operations on those collections. Adding specs to your code can make the implicit
structure explicit.

For example, we could annotate this code with the following specs (s here is an alias
for the clojure.spec.alpha namespace):

src/examples/spec.clj

 ;; Specs describing an ingredient
 (s/def ::ingredient (s/keys :req [::name ::quantity ::unit]))
 (s/def ::name string?)
 (s/def ::quantity number?)
 (s/def ::unit keyword?)

 ;; Function spec for scale-ingredient
 (s/fdef scale-ingredient
 :args (s/cat :ingredient ::ingredient :factor number?)
 :ret ::ingredient)

These specs give us a precise description of the shape of an ingredient map, its fields,
and their contents. The function spec gives us an explicit definition of the arguments
and return value of scale-ingredient. These specs don’t just serve as documentation.
The spec library uses them to provide several additional tools that operate on specs—
data validation, explanations of invalid data, generation of example data, and even
automatically created generative tests for functions with a spec.

We’ll start by considering how to define specs in our code and use them at runtime,
followed by how we combine specs and validate data. Finally, we’ll see how to use

http://media.pragprog.com/titles/shcloj3/code/src/examples/spec.clj

s/fdef to define function specs for argument checking and generative testing.

Defining Specs
Specs are logical compositions of predicates (functions returning a logical true/false
value) used to describe a set of data values. The spec library provides operations to
create, combine, and register specs.

To work with spec, you’ll need to load the namespace clojure.spec.alpha, which is
commonly aliased to s. All spec examples in this chapter use the s alias to refer to
functions or macros from the clojure.spec library.

 (require '[clojure.spec.alpha :as s])

The s/def macro names and registers a spec in the global registry of specs accessible
in the current Clojure program. The syntax for s/def is:

 (s/def name spec)

Spec names are qualified keywords. For example, a simple spec definition using a
predicate spec looks like:

 (s/def :my.app/company-name string?)

Place this spec definition in your Clojure source file at the top level, just like var
definitions made with the special form def. When creating function specs, most
developers place them before the function they describe or sometimes collect all of the
function specs into a separate namespace. For example, clojure.core itself has specs in
a separate namespace clojure.core.specs.alpha.

At runtime, specs are read and evaluated like function definitions. The global spec
registry stores the spec, keyed by name.

Spec names must be fully qualified keywords. As a Clojure developer, it’s your
responsibility to use sufficiently qualified keywords as names so that your code will
work with other code in the greater ecosystem. If you’re writing a library for public
reuse, you should follow rules similar to those used when choosing the project group
ID and artifact ID when deploying the project artifact. Namely, the qualified part of
the keyword should start with a domain name or a product or project name for which
you control the trademark or mindshare in the market. For example,
:cognitect.transit.handler/name would be sufficient.

When these qualified keywords are cumbersome in code, we can use aliases and auto-

resolved keywords to simplify their names. Auto-resolved keywords start with ::. If no
qualifier is specified (::ingredient), then the current namespace is used as the qualifier.
Since project namespaces are often sufficiently qualified, this is a great way to
piggieback on good choices we’ve already made.

If a qualifier is specified, then it can refer to an alias defined in the current namespace.
For example, ::recipe/ingredient might expand to the namespace aliased to recipe,
perhaps :cookingco.recipe/ingredient. In this chapter, we often use auto-resolved
keywords for brevity in the code examples.

Next, we’ll look at how to create and combine specs to validate data, which we can
choose to do during development or even at runtime.

Validating Data
Any time you receive a value from a user or an external source, that data may contain
values that break your expectations. Instead, Clojure specs precisely describe those
expectations, check whether the data is valid, and determine how it conforms to the
specification. In the case where data is invalid, you may want to know what parts are
invalid and why.

Predicates are the simplest kind of spec—they check whether a predicate matches a
single value. Other specs compose predicates (and other specs) to create more
complicated specifications. Some of the tools we’ll discuss include range specs, logical
connectors like and and or, and collection specs. These specs combine to cover any
data structure you need to describe.

Predicates
Predicate functions that take a single value and return a logical true or false value are
valid specs. Clojure provides dozens of predicates (many of these functions end in ?);
you can use any of those or ones in your own project. Some example predicates in
clojure.core are functions like boolean?, string?, and keyword?. These predicates
check for a single underlying type.

Other predicates combine several types together, such as rational?, which returns true
for a value that is an integer, a decimal, or a ratio. Many predicates verify a property of
the value itself, like pos?, zero?, empty?, any?, and some?.

Consider a simple predicate spec for a company name:

 (s/def :my.app/company-name string?)

We’ve registered the specification for a company name in our application, so let’s use
it to validate incoming data:

 (s/valid? :my.app/company-name "Acme Moving")
 -> true

 (s/valid? :my.app/company-name 100)
 -> false

Now that we’ve created the spec and registered it with a name (:my.app/company-
name), other parts of our program can use it as well. As we code, we build and record
the semantics of our domain.

Next, we’ll consider the common case of writing a spec that matches a set of
enumerated values.

Enumerated values
If we’re in the business of selling marbles, we might stock three colors—red, green,
and blue. When defining a spec for the color, we want to match any of those three
values (declared as a keyword). Clojure sets are a perfect match for this—they allow
us to store a set of non-duplicate items with a fast check for containment. Even better,
sets implement the function interface and are valid specs as well:

 (s/def :marble/color #{:red :green :blue})

 (s/valid? :marble/color :red)
 -> true

 (s/valid? :marble/color :pink)
 -> false

Consider writing a spec to match a bowling roll, where 0–10 pins could be knocked
down. We can write such a spec like this:

 (s/def ::bowling/roll #{0 1 2 3 4 5 6 7 8 9 10})

 (s/valid? ::bowling/roll 5)
 -> true

This works fine, but it seems silly to need to say all those numbers in order. We should
make our computer take care of that instead, and range specs provide this
functionality.

Range Specs
Clojure spec provides several range specs for just the purpose of validating a range of
values, like a bowling roll. Let’s rewrite our spec using the provided s/int-in spec. We
provide this spec with beginning (inclusive) and end (exclusive) integer values.

 (s/def ::bowling/ranged-roll (s/int-in 0 11))

 (s/valid? ::bowling/ranged-roll 10)
 -> true

In addition to s/int-in, s/double-in and s/inst-in are for ranges of doubles and time
instants. All of these cases define value ranges with lower and upper bounds. The

details vary slightly depending on the data type, so check the doc string for each
function for proper use using (doc s/double-in) or (doc s/inst-in). Now let’s see how
specs handle the special case of nil values.

Handling nil
Most predicates in Clojure will return false for the nil value; however, there are many
cases where you’ll want to take an existing spec and extend it to also include the nil
value. You can use the special s/nilable operation to extend an existing spec.

For example we could define our company name field as accepting either strings or
nil:

 (s/def ::my.app/company-name-2 (s/nilable string?))

 (s/valid? ::my.app/company-name-2 nil)
 -> true

The s/nilable predicate provides optimal performance and is preferred over equivalent
specs that you might construct with s/or or other operations.

One case you might encounter is spec’ing the set of values true, false, or nil. It’s
tempting to use an explicit set for this #{true, false, nil}. However, when you ask
whether a set contains a value, it returns the matching value—in this case, possibly
false or nil. Spec interprets this as the predicate rejecting the value, rather than
accepting it. Instead, use s/nilable to add nil as a valid value to the boolean? predicate:

 (s/def ::nilable-boolean (s/nilable boolean?))

This will give you the correct behavior and the best performance.

Now that we know the basics of working with predicates and sets, we can consider
writing more interesting compound specs that combine specs using logical operations.

Logical Specs
Logical specs create composite specs from other specs using s/and or s/or. For
example, to create a spec for an odd integer, combine the predicates int? and odd?:

 (s/def ::odd-int (s/and int? odd?))
 (s/valid? ::odd-int 5)
 -> true
 (s/valid? ::odd-int 10)
 -> false

 (s/valid? ::odd-int 5.2)
 -> false

In this example, we’re combining predicates, but s/and can take any kind of spec.

Similarly, we use s/or to combine multiple alternatives. For instance, to add 42 as a
valid value in our last spec:

 (s/def ::odd-or-42 (s/or :odd ::odd-int :42 #{42}))

With s/or, we see that things are a bit different—each option in the s/or contains a
keyword tag used to report how a value matches (or doesn’t match) the spec.

If we want to know how a value matched a spec, we can use s/conform, which returns
the value annotated with information about optional choices or the components of the
value. We call this a conformed value.

For all of the specs we’ve seen until this point, there were no options or components,
and so the conformed value was the same as the original value. The s/or contains a
choice, and the conformed value tags the choice taken with the key (either :42 or
:odd):

 (s/conform ::odd-or-42 42)
 -> [:42 42]
 (s/conform ::odd-or-42 19)
 -> [:odd 19]

The conformed value for an s/or is a map entry, and the key and val functions extract
the tag and value, respectively. The s/conform operation parses a value and describes
the parse structure using the tags.

Conversely, the s/explain function describes all of the ways an invalid value didn’t
match its spec:

 (s/explain ::odd-or-42 0)
 | val: 0 fails spec: :user/odd-int at: [:odd] predicate: odd?
 | val: 0 fails spec: :user/odd-or-42 at: [:42] predicate: #{42}

Here, spec has found and reported two problems with the value. The first problem is
that the value is not odd. Note that it passed the int? check inside ::odd-int, so the
report only includes the failing predicates. In each problem line, we see the failing
value, the spec being checked, the tag path to the failing spec, and the failing predicate.

The explain messages print to the console, but we can alternately retrieve this info as a

string with s/explain-str or as data with s/explain-data.

Now that we’ve started to compose specs, you may be looking at your own data and
thinking about how to write specs for it. Most Clojure data is not made of individual
values but of collections, and there are a number of ways to write collection specs.

Collection Specs
The two most common collection specs you’ll use are s/coll-of and s/map-of. The
s/coll-of spec describes lists, vectors, sets, and seqs. You provide a spec that members
of the collection must satisfy, and spec checks all members.

 (s/def ::names (s/coll-of string?))
 (s/valid? ::names ["Alex" "Stu"])
 -> true
 (s/valid? ::names #{"Alex" "Stu"})
 -> true
 (s/valid? ::names '("Alex" "Stu"))
 -> true

The s/coll-of spec also comes with many additional options supplied as keyword
arguments at the end of the spec.

:kind - a predicate checked at the beginning of the spec. Common examples are
vector? and set?.

:into - one of these literal collections: [], (), or #{}. Conformed values collect into
the specified collection.

:count - an exact count for the collection.

:min-count - a minimum count for the collection.

:max-count - a maximum count for the collection.

:distinct - true if the elements of the collection must be unique.

As you can see, these options allow for specifying many common collection shapes
and constraints. For example, we can choose to match just int sets with at least two
values with a spec like this:

 (s/def ::my-set (s/coll-of int? :kind set? :min-count 2))
 (s/valid? ::my-set #{10 20})

Similar to s/coll-of, s/map-of specs a lookup map where the keys and values each
follow a spec, such as a mapping from player names to scores:

 (s/def ::scores (s/map-of string? int?))
 (s/valid? ::scores {"Stu" 100, "Alex" 200})
 -> true

All of the s/coll-of options also apply, although you won’t typically need to use :into
or :kind because they default to map-specific settings.

If you recall, the s/conform function tells how a value was parsed according to a spec.
s/map-of conforms to a map and always conforms values. Keys are not conformed by
default, but you can change that using the :conform-keys flag.

In cases of large collections or large maps, you might not want to validate or conform
all values. For these cases, you can use the sampling specs s/every and s/every-kv
instead.

Collection Sampling
The sampling collection specs are s/every and s/every-kv for collections and maps,
respectively. They are similar in operation to s/coll-of and s/map-of, except they
check up to only s/*coll-check-limit* elements (by default, 101).

Because these specs validate only a limited subset of values and conform no elements,
large collections and maps have much better validation performance.

Tuples
Tuples are vectors with a known structure where each fixed element has its own spec.
For example, a vector of x and y coordinates can represent a point:

 (s/def ::point (s/tuple float? float?))
 (s/conform ::point [1.3 2.7])
 -> [1.3 2.7]

Tuples do not name or tag the returned fields. Later in this chapter, we’ll see another
approach to handling sequential collections with well-known internal structure (using
s/cat).

It’s common to use maps to represent information with well-known fields. Clojure
spec provides a number of tools for handling these kinds of maps, which we’ll look at
next.

Information Maps
It’s common in Clojure to represent domain objects as maps with well-known fields;
for example, we might be managing data related to bands and music albums. We might
represent a particular release like this:

 {::music/id #uuid "40e30dc1-55ac-33e1-85d3-1f1508140bfc"
 ::music/artist "Rush"
 ::music/title "Moving Pictures"
 ::music/date #inst "1981-02-12"}

We start with describing specs for the attributes:

src/examples/spec.clj

 (s/def ::music/id uuid?)
 (s/def ::music/artist string?)
 (s/def ::music/title string?)
 (s/def ::music/date inst?)

Many validation libraries define the structure of a map of attributes by including
definitions of the attributes. This approach introduces important long-term problems.
Attributes have independent semantics and may be reused across different structures
where they should have the identical meaning without needing to be redefined.

By contrast, Clojure spec requires attributes to be defined independently and then
defines map specs as open collections of attributes with no need for restatement of
attribute definitions. This approach easily supports subsets of maps, evolution of maps
over time, and the transfer of maps through subsystems where not all attributes need to
be understood by the intermediary.

To specify a map of attributes, we use s/keys, which describes both required and
optional attributes:

src/examples/spec.clj

 (s/def ::music/release
 (s/keys :req [::music/id]
 :opt [::music/artist
 ::music/title
 ::music/date]))

Here we define a ::music/release map to require only a ::music/id attribute, and all
other attributes are optional.

http://media.pragprog.com/titles/shcloj3/code/src/examples/spec.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/spec.clj

An important additional feature of s/keys is that it will validate the values of all
registered keys, even if they’re not listed as required or optional. For example, if new
optional attributes for ::music/release are added in the future, the s/keys spec will
automatically validate those as well. This approach encourages the uniform validation
of registered attributes and the growth of systems over time.

In the case where you have existing maps that don’t use qualified keys, the variant
options :req-un and :opt-un take a spec identifier but find the value to check by using
the unqualified name of the spec. For example, if our map instead looked like this:

 {:id #uuid "40e30dc1-55ac-33e1-85d3-1f1508140bfc"
 :artist "Rush"
 :title "Moving Pictures"
 :date #inst "1981-02-12"}

we could use our existing attribute specs to create an unqualified version of the spec:

src/examples/spec.clj

 (s/def ::music/release-unqualified
 (s/keys :req-un [::music/id]
 :opt-un [::music/artist
 ::music/title
 ::music/date]))

This version of the spec will match the spec for ::music/id with the unqualified
attribute :id and so on for the other attributes as well. Specs for records also use the
same approach with unqualified attributes.

You’ve now seen an overview of the basic tools for specifying the structure of our
data. In the next section, we take things to the next level by specifying the inputs and
outputs of our functions using specs. When we do that, we’ll need some way to specify
the syntax for function calls, and that will bring in one final set of specs we’ve not yet
examined—regex ops.

http://media.pragprog.com/titles/shcloj3/code/src/examples/spec.clj

Validating Functions
A function spec describes the operation of a function. It thus contains up to three
specs: an “args” spec for the arguments of the function, a “ret” spec describing the
return value, and a “fn” spec used to relate the arguments to the return value. Creating
function specs unlocks many of the most useful capabilities of the spec library, like
instrumentation and generative testing.

The argument spec defines the collection of arguments that you can use to invoke the
function being spec’ed. The spec operations we’ve seen so far allowed us to create
specs for collections, but we need more power to represent the broad range of
variability we see in function arguments—repeated arguments, optional arguments,
and other structured collections. For these, spec provides regex op specs.

Most languages have support for matching the characters in a string according to a
regular expression,[28] which defines the structure of the string (including repeated or
optional patterns). Similarly, regex op specs apply one or more specs to match the
values in a collection.

Let’s see how we can use regex op specs to define the arguments in a function spec
and then instrument our code to automatically validate the arguments of a function
call.

Sequences With Structure
String regular expressions match the characters in a string. For example, the regular
expression abc* describes strings like "ab", "abc", and "abcc". In string regular
expressions, placing two matching expressions next to each other indicates
concatentation. The special operator * represents the repetition of 0 or more times of
the prior matching expression (in this case, c).

Regex op specs provide a similar function, but instead of matching characters in a
string, they match any arbitrary value in a collection. Like string regular expressions,
regex op specs can match concatenated, repeated, and optional patterns.

Perhaps the most common regex op spec is s/cat, which specifies a concatenation (a
series of elements, in order), where each element is simply another spec. s/cat specs
also name each component for use in conforming valid values or explaining invalid
values.

For example, a spec to describe a sequential collection taking a string and an integer
looks like:

 (s/def ::cat-example (s/cat :s string? :i int?))
 -> :user/cat-example

 (s/valid? ::cat-example ["abc" 100])
 -> true

In the s/cat, each component has a keyword tag naming the component in the
conformed result:

 (s/conform ::cat-example ["abc" 100])
 -> {:s "abc", :i 100}

There is also a regex op spec s/alt for indicating alternatives within the sequential
structure. The conformed value is an entry with the matched tag and value.

 (s/def ::alt-example (s/alt :i int? :k keyword?))
 -> :user/alt-example

 (s/valid? ::alt-example [100])
 -> true

 (s/valid? ::alt-example [:foo])
 -> true

 (s/conform ::alt-example [:foo])
 -> [:k :foo]

Just like string regular expressions, spec also contains operators for the repetition of a
spec, which we’ll dive into next.

Repetition Operators
There are three repetition operators—s/? for 0 or 1, s/* for 0 or more, and s/+ for 1 or
more.

All of the regex operators can be combined and nested arbitrarily along with
predicates, sets, and other specs. The key thing to remember is that all connected regex
ops describe the structure of a single sequential collection.

Consider the example of a collection that contains one or more odd numbers and an
optional trailing even number:

 (s/def ::oe (s/cat :odds (s/+ odd?) :even (s/? even?)))
 -> :user/oe

 (s/conform ::oe [1 3 5 100])
 -> {:odds [1 3 5], :even 100}

Note how the nested s/+ and s/? don’t describe nested collections like [[1 3 5] [100]].
All regex op specs combine to describe the structure of a single top-level collection.
This also applies to named regex ops, which allows us to factor regex op specs into
smaller reusable pieces:

 (s/def ::odds (s/+ odd?))
 -> :user/odds

 (s/def ::optional-even (s/? even?))
 -> :user/optional-even

 (s/def ::oe2 (s/cat :odds ::odds :even ::optional-even))
 -> :user/oe2

 (s/conform ::oe2 [1 3 5 100])
 -> {:odds [1 3 5], :even 100}

Variable Argument Lists

Consider now how we might spec the arguments for a function that took multiple
arguments. For example, println takes zero or more objects and prints them as a string
with spaces between them. We can use the any? predicate to specify each object and
s/* to indicate the repetition:

 (s/def ::println-args (s/* any?))

We might also have both some fixed arguments and a variable argument at the end.
For example, in the clojure.set namespace, the intersection function takes at least one
initial set, followed by any number of sets to intersect:

 (doc clojure.set/intersection)
 | -------------------------
 | clojure.set/intersection
 | ([s1] [s1 s2] [s1 s2 & sets])
 | Return a set that is the intersection of the input sets
 -> nil

 (clojure.set/intersection #{1 2} #{2 3} #{2 5})
 -> #{2}

We can spec the arguments to intersection as follows.

 (s/def ::intersection-args
 (s/cat :s1 set?
 :sets (s/* set?)))

 (s/conform ::intersection-args '[#{1 2} #{2 3} #{2 5}])
 -> {:s1 #{1 2}, :sets [#{3 2} #{2 5}]}

To conform the args, we pass them in a vector, just as if we were invoking apply on
the function and passing this vector of args. The conformed value returns the map
describing each argument.

In this case, because each argument is the same spec, we could also use just s/+:

 (s/def ::intersection-args-2 (s/+ set?))
 -> :user/intersection-args-2

 (s/conform ::intersection-args-2 '[#{1 2} #{2 3} #{2 5}])
 -> [#{1 2} #{3 2} #{2 5}]

Another common case in Clojure is the use of optional keyword arguments. For
example, looking at the atom function, it has a signature (atom x & options) with
options named :meta or :validator. Clojure supports the destructuring of these
keyword options as if they were a map. Clojure spec can also create a regex spec as if
these were a map using s/keys*, which has the identical structure to s/keys.

You can spec atom’s args like this (some of these args are deliberately under-specified
for demonstration purposes):

 (s/def ::meta map?)
 -> :user/meta

 (s/def ::validator ifn?)
 -> :user/validator

 (s/def ::atom-args
 (s/cat :x any? :options (s/keys* :opt-un [::meta ::validator])))
 -> :user/atom-args

 (s/conform ::atom-args [100 :meta {:foo 1} :validator int?])
 -> {:x 100,
 :options {:meta {:foo 1},
 :validator #object[clojure.core$int_QMARK_ ...]}}

The atom function follows a typical pattern of having two arities—one with options
and one without. This is the most common case for multi-arity functions. However, it’s
also typical to encounter functions with an optional first argument, multiple invocation
styles, or an argument that is repeated many times. Regex specs can cover all of these
cases, and we’ll look at another example in the next section.

Multi-arity Argument Lists
You can see another case of multi-arity argument lists in the repeat function, which
has two arities, one with and one without the length n, which is the first argument, not
the second. The spec can simply declare that first argument as optional:

 (doc repeat)
 | -------------------------
 | clojure.core/repeat
 | ([x] [n x])
 | Returns a lazy (infinite!, or length n if supplied) sequence of xs.
 -> nil

 (s/def ::repeat-args
 (s/cat :n (s/? int?) :x any?))
 -> :user/repeat-args

 (s/conform ::repeat-args [100 "foo"])
 -> {:n 100, :x "foo"}

 (s/conform ::repeat-args ["foo"])
 -> {:x "foo"}

In some relatively rare cases, the arities are sufficiently different that it makes more
sense to use s/alt to fully describe each arity.

Now that we’ve examined how to spec the arguments of a function, it’s time to spec
the function itself.

Specifying Functions
Function specs are a combination of three different specs for the arguments, the return
value, and the “fn” spec that describes the relationship between the arguments and
return.

Let’s start with a function spec for rand:

 clojure.core/rand

([] [n])
 Returns a random floating point number between 0 (inclusive) and
 n (default 1) (exclusive).

We can first create an argument spec that is either empty or takes an optional number:

src/examples/spec.clj

 (s/def ::rand-args (s/cat :n (s/? number?)))

The docstring states the function’s return value is a floating point number, but we can
more precisely state that it will be a double:

src/examples/spec.clj

 (s/def ::rand-ret double?)

We then need to consider the :fn spec, which receives a map containing the conformed
args and the conformed return value based on their specs. In this case, the docs state
that the random number must be >= 0 and <= n. Let’s state that as a predicate:

src/examples/spec.clj

 (s/def ::rand-fn
 (fn [{:keys [args ret]}]
 (let [n (or (:n args) 1)]
 (cond (zero? n) (zero? ret)
 (pos? n) (and (>= ret 0) (< ret n))
 (neg? n) (and (<= ret 0) (> ret n))))))

We can now tie all these together using s/fdef, which takes a fully-qualified function
name and one or more of the specs (we’ll supply all three):

src/examples/spec.clj

 (s/fdef clojure.core/rand
 :args ::rand-args
 :ret ::rand-ret
 :fn ::rand-fn)

In a moment we’ll see how to use these specs, but first, let’s take a slight detour to talk
about spec’ing anonymous functions.

Anonymous Functions

http://media.pragprog.com/titles/shcloj3/code/src/examples/spec.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/spec.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/spec.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/spec.clj

Higher order functions (ones that take and return functions) are common in Clojure.
Use s/fspec to define the spec of an anonymous function. The syntax is the same as
s/fdef but omits the function name. For instance, consider a function opposite, which
takes a predicate function and creates the opposite predicate function:

src/examples/spec.clj

 (defn opposite [pred]
 (comp not pred))

The function opposite accepts a predicate function, which we can describe using
s/fspec. We can use that function spec in both the :args and :ret spec for opposite.

src/examples/spec.clj

 (s/def ::pred
 (s/fspec :args (s/cat :x any?)
 :ret boolean?))

 (s/fdef opposite
 :args (s/cat :pred ::pred)
 :ret ::pred)

It’s also worth considering a simpler spec for anonymous functions—they don’t
always need to be fully spec’d, and sometimes simply using ifn? as the spec is
sufficient. Now that we’ve seen how to spec functions, let’s consider what we can do
with them.

Instrumenting Functions
During development and testing, we can use instrumentation (stest/instrument) to
wrap a function with a version that uses spec to verify that the incoming arguments to
a function conform to the function’s spec.

Instrumentation is for :args Only
Note that instrumentation does not check the :ret or :fn specs—the purpose of
instrumentation is for verifying correct invocation, not correct implementation. We’ll see
more on testing implementations later with stest/check.

Once you’ve defined a spec for a function with s/fdef, call stest/instrument on the

http://media.pragprog.com/titles/shcloj3/code/src/examples/spec.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/spec.clj

fully qualified function symbol to enable it:

 (require '[clojure.spec.test.alpha :as stest])
 (stest/instrument 'clojure.core/rand)
 -> [clojure.core/rand]

You can also use stest/enumerate-namespace to enumerate a collection of all
symbols in a namespace to pass to stest/instrument:

 (stest/instrument (stest/enumerate-namespace 'clojure.core))
 -> [clojure.core/rand]

Note that instrument returns a collection of all symbols that were successfully
instrumented. Check the return value to ensure it contains your intended symbols.

Instrumenting a function replaces its var with a new var that will check args and
invoke the old function via its var. In the following, an invalid call to rand triggers an
error:

 (rand :boom)
 | ExceptionInfo Call to #'clojure.core/rand did not conform to spec:
 | In: [0] val: :boom fails spec: :user/rand-args
 | at: [:args :n] predicate: number?
 | :clojure.spec.alpha/args (:boom)
 | :clojure.spec.alpha/failure :instrument
 | :clojure.spec.test.alpha/caller {...}

Here we see an explain failure for the rand args spec. It expected a number? but
received the value :boom, clearly not a number.

Instrumentation is not designed for production-time usage (there is an overhead in
validating the spec and invoking a secondary var), but instrumentation is a valuable
tool for catching errors faster at development or test time.

Let’s move from catching invalid calls to a function to instead using a function’s specs
to test the function itself with stest/check.

Generative Function Testing
Classic example-based unit testing relies on the programmer to test a function by
writing a series of example inputs, then writing assertions about the return value when
the function is invoked with each input.

In comparison, generative testing is a technique that produces thousands of random
inputs, runs a procedure, and verifies a set of properties for each output. Generative
testing is a great technique for getting broader test coverage of your code.

Spec can automatically perform generative testing for functions that have function
specs. Let’s see how that’s done and then explore ways to influence those tests for
more accurate coverage.

Checking Functions
Spec implements automated generative testing with the function check in the
namespace clojure.spec.test.alpha (commonly aliased as stest). You can run
stest/check on any symbol or symbols that have been spec’ed with s/fdef.

Including the test.check Library
All invocations of spec generators (either directly or within stest/instrument,
stest/check, etc.) require including the test.check library as a dependency, typically as
either a test or dev profile dependency, so that it’s not included at production runtime.

When you invoke check, it generates 1000 sets of arguments that are valid according
to the function’s :args spec. For each argument set, check invokes the function, then
checks that the return value is valid according to the :ret spec and that the :fn spec is
valid for the arguments and return value.

Let’s see how it works with a spec for the Clojure core function symbol, which takes a
name and an optional namespace:

 (doc symbol)
 | -------------------------
 | clojure.core/symbol
 | ([name] [ns name])
 | Returns a Symbol with the given namespace and name.

First we need to define the function spec:

src/examples/spec.clj

 (s/fdef clojure.core/symbol
 :args (s/cat :ns (s/? string?) :name string?)
 :ret symbol?
 :fn (fn [{:keys [args ret]}]
 (and (= (name ret) (:name args))
 (= (namespace ret) (:ns args)))))

And then we can run the test as follows:

 (stest/check 'clojure.core/symbol)
 -> ({:sym clojure.core/symbol
 :spec #object[clojure.spec.alpha$fspec_impl$reify__14282 ...],
 :clojure.spec.test.check/ret {
 :result true,
 :num-tests 1000,
 :seed 1485241441400}})

You can see from the output that stest/check ran 1000 tests on clojure.core/symbol
and found no problems. When an error occurs, the test.check library goes the extra step
of “shrinking” the error to the least complicated possible input that still fails. In
complex tests, this is a crucial step to produce tractable input for reproduction and
fixing.

One step that we glossed over is how spec generated 1000 random input arguments.
While we haven’t mentioned it before, every spec is both a validator and a data
generator for values that match the spec. Once we created a spec for the function
arguments, check was able to use it to generate random arguments.

Generating Examples
The argument spec we used above was (s/cat :ns (s/? string?) :name string?). To
simulate how check generates random arguments from that spec, we can use the
s/exercise function, which produces pairs of examples and their conformed values:

 (s/exercise (s/cat :ns (s/? string?) :name string?))
 -> ([("" "") {:ns "", :name ""}]
 [("F" "") {:ns "F", :name ""}]
 [("s" "73") {:ns "s", :name "73"}]
 [("u") {:name "u"}]
 [("") {:name ""}]

http://media.pragprog.com/titles/shcloj3/code/src/examples/spec.clj

 [("" "3y") {:ns "", :name "3y"}]
 [("t" "9pudu") {:ns "t", :name "9pudu"}]
 [("Xhw25" "nPR7C9C") {:ns "Xhw25", :name "nPR7C9C"}]
 [("FXs3E" "N") {:ns "FXs3E", :name "N"}]
 [("UhUN5dZK1" "le8") {:ns "UhUN5dZK1", :name "le8"}])

This example works, but sometimes spec can’t automatically create a valid generator,
or you need to create a custom generator for related arguments. In the following
sections, we’ll see how to address these issues. First, let’s consider a case where an
s/and spec doesn’t produce any values.

Combining Generators With s/and
One of the most common ways to compose specs is with s/and. The s/and operation
uses the generator of its first component spec, then filters the values by each
subsequent component spec.

For example, consider the following spec for an odd number greater than 100:

 (defn big? [] (> x 100))

 (s/def ::big-odd (s/and odd? big?))

This would work as a spec, but its automatic generator doesn’t work:

 (s/exercise ::big-odd)
 -> Unable to construct gen at: [] for: odd?

The problem is that while many common Clojure predicates have automatically
mapped generators, the predicates we’re using here do not. The odd? predicate works
on more than one numeric type and so is not mapped to a generator. The big? predicate
is a custom predicate that will never have mappings.

To fix this, we need to add an initial predicate that has a mapped generator—the type-
oriented predicates are all good choices for that. Let’s insert int? at the beginning:

 (s/def ::big-odd-int (s/and int? odd? big?))
 -> ::big-odd-int

 (s/exercise ::big-odd-int)
 -> ([1367 1367]
 [7669 7669]
 [171130765 171130765]
 ...)

When you debug generators for s/and specs, remember that only the first component
spec’s generator is used. Another related problem with s/and generators is when the
component specs after the first one are too “sparse”, filtering so many values that the
generator would have to work for a long time to generate a valid one. The best way to
solve this problem is with a custom generator.

Creating Custom Generators
There are many cases where the automatic generator is either inefficient or will not
produce related values that are useful. For example, a function might take two
arguments—a collection and an element from that collection. An automatic generator
is unlikely to independently produce valid combinations of values. Instead, you need
to supply your own custom generator that satisfies this constraint.

You have a number of opportunities in spec to replace the automatically created
generator with your own implementation. Some specs like s/coll-of, s/map-of,
s/every, s/every-kv, and s/keys accept a custom generator option.

Also, you can explicitly add a replacement generator to any existing spec with s/with-
gen. And you can temporarily override a generator by name or path with generator
overrides in some functions like s/exercise, stest/instrument, and stest/check—
those overrides take effect only for the duration of the call.

We can create generators in several ways. The simplest way is to first create a different
spec, then use s/gen to retrieve its generator. Alternately, the clojure.spec.gen.alpha
namespace, typically aliased as gen, contains other generators and functions to
combine generators. The generators in this namespace are wrappers around the
test.check library, so you need that library on your classpath to do any work with
generators.

Let’s look at how we can supply a replacement generator for :marble/color to hard-
code exactly the color to return. Occasionally this is useful to reduce the randomness
of your inputs or to directly supply a complex input that would be difficult to generate.

Here we use s/with-gen to override the default generator for :marble/color (which
produces marbles of all colors) and replace it with a generator that only produces red
marbles:

 (s/def :marble/color-red
 (s/with-gen :marble/color #(s/gen #{:red})))
 -> :marble/color-red

 (s/exercise :marble/color-red)
 -> ([:red :red] [:red :red] [:red :red] ...)

The clojure.spec.gen.alpha namespace contains many functions to generate all of the
standard Clojure types, collections, and more. One function it provides (gen/fmap)
allows you to start from a source generator, then modify each generated value by
applying another function.

For example, to generate strings that start with a standard prefix, you can generate the
random suffix, then concatenate the prefix. The generator itself might look like this:

 (require '[clojure.string :as str])

 (s/def ::sku
 (s/with-gen (s/and string? #(str/starts-with? % "SKU-"))
 (fn [] (gen/fmap #(str "SKU-" %) (s/gen string?)))))

Here, gen/fmap starts with a source generator (the generator for any valid string), then
applies a function to the generated values to prefix the random string with "SKU-".
That generator is then attached to the spec. Let’s try exercising it:

 (s/exercise ::sku)
 -> (["SKU-" "SKU-"] ["SKU-P" "SKU-P"] ["SKU-L56" "SKU-L56"] ...)

You now know how to adjust your specs to create better generators, and when
necessary, how to replace your generators with your own custom implementations.
With these tools, you can create good argument specs for your functions and
automatically test your functions with generative testing.

[28]

Wrapping Up
In this chapter we’ve looked at how to specify the structure of both our data and our
functions. You learned how to validate your data using a spec with s/valid?, as well as
how to discover how it conformed with s/conform or how it failed with s/explain.

Additionally, you learned how to check for invalid calls with stest/instrument when
working at the REPL or in tests, and how to automatically test a properly spec’d
function using stest/check.

The spec library requires a fair amount of extra effort in the code you write,
particularly if you take the extra step to ensure that the :args spec of any function
generates high-quality inputs for testing. However, you also gain lots of leverage by
doing so, and it’s entirely up to you how much of your code to spec.

Next, we change our focus to consider the management of state and how to write
concurrent programs using Clojure.

Footnotes

https://en.wikipedia.org/wiki/Regular_expression

Copyright © 2018, The Pragmatic Bookshelf.

https://en.wikipedia.org/wiki/Regular_expression

Chapter 6

State and Concurrency

A state is the value of an identity at a point in time.

Quite a lot is packed into the previous sentence. Let’s unpack the word value first. A
value is an immutable, persistent data structure. When you can program entirely with
values, life is easy, as we saw in Chapter 4, Functional Programming.

The flow of time makes things substantially more difficult. Are the New York
Yankees the same now as they were last year? In 1927? The roster of the Yankees is
an identity whose value changes over time.

Updating an identity does not destroy old values. In fact, updating an identity has no
impact on existing values whatsoever. The Yankees could trade every player, or
disband in a fit of boredom, without in any way altering our ability to think about any
past Yankees we happen to care about.

Clojure’s reference model clearly separates identities from values. Almost everything
in Clojure is a value. For identities, Clojure provides four reference types:

Refs manage coordinated, synchronous changes to shared state.
Atoms manage uncoordinated, synchronous changes to shared state.
Agents manage asynchronous changes to shared state.
Vars manage thread-local state.

Each of these APIs is discussed in this chapter. At the end of the chapter, we’ll
develop a sample application. The Snake game demonstrates how to divide an
application model into immutable and mutable components.

Before we start, let’s review the intersection of state with concurrency and parallelism,
as well as look at the difficulty with traditional lock-based approaches.

Concurrency, Parallelism, and Locking
A concurrent program models more than one thing happening simultaneously. A
parallel program takes an operation that could be sequential and chooses to break it
into separate pieces that can execute concurrently to speed overall execution.

There are many reasons to write concurrent or parallel programs:

For decades, performance improvements have come from packing more power
into cores. Now, and for the near future, performance improvements will come
from using more cores. Our hardware is itself more concurrent than ever, and
systems must be concurrent to take advantage of this power.

Expensive computations may need to execute in parallel on multiple cores (or
multiple boxes) to complete in a timely manner.

Tasks that are blocked waiting for a resource should stand down and let other
tasks use available processors.

User interfaces need to remain responsive while performing long-running tasks.

Operations that are logically independent are easier to implement if the platform
can recognize and take advantage of their independence.

Concurrency makes it glaringly obvious that more than one observer (e.g., thread) may
be looking at your data. This is a big problem for languages that complect[29] value and
identity. Such languages treat a piece of data as a bank ledger with only one line. Each
new operation erases history, potentially corrupting the work of every other thread on
the system.

While concurrency makes the challenges more obvious, it’s a mistake to assume that
multiple observers come into play only with concurrency. If your program ever has
two variables that refer to the same data, those variables are different observers. If
your program allows mutability at all, then you must think carefully about state.

Mutable languages tend to tackle the challenge by locking and defensive copying.
Continuing the ledger analogy: the bank hires guards (locks) to supervise the activities
of anybody using a ledger, and nobody is allowed to modify a ledger while anybody
else is using it.

When the performance becomes really bad, the bank may even ask ledger readers to
make their own private copies of the ledger so they can get out of the way and let
transactions continue. These copies must still be supervised by the guards!

As irritating as this model sounds, it gets worse at the level of implementation detail.
Choosing what and where to lock is a difficult task. If you get it wrong, all sorts of bad
things can happen. Race conditions between threads can corrupt data. Deadlocks can
stop an entire program from functioning at all. Java Concurrency in Practice [Goe06]
covers these and other problems, plus their solutions, in detail. It’s a terrific book, but
it’s difficult to read it and not ask yourself, “Is there another way?”

Clojure’s model for state and identity solves these problems. The bulk of program
code is functional. The small parts of the codebase that truly benefit from mutability
are distinct and must explicitly select one of four reference models. Using these
models, you can split your models into two layers:

A functional model that has no mutable state. Most of your code will normally be
in this layer, which is easier to read, easier to test, and easier to parallelize.

Reference models for the parts of the application that you find more convenient to
deal with using mutable state (despite its disadvantages).

Let’s get started working with state in Clojure, using the most notorious of Clojure’s
reference models: software transactional memory.

Refs and Software Transactional Memory
Most objects in Clojure are immutable. When you really want mutable data, you must
be explicit about it, such as by creating a mutable reference (ref) to an immutable
object. You create a ref with this:

 (ref initial-state)

For example, you could create a reference to the current song in your music playlist:

 (def current-track (ref "Mars, the Bringer of War"))
 -> #'user/current-track

The ref wraps and protects access to its internal state. To read the contents of the
reference, you can call deref:

 (deref reference)

The deref function can be shortened to the @ reader macro. Try using both deref and
@ to dereference current-track:

 (deref current-track)
 -> "Mars, the Bringer of War"

 @current-track
 -> "Mars, the Bringer of War"

Notice how in this example the Clojure model fits the real world. A track is an
immutable entity. It doesn’t change into another track when you’re finished listening
to it. But the current track is a reference to an entity, and it does change.

ref-set
You can change where a reference points with ref-set:

 (ref-set reference new-value)

Call ref-set to listen to a different track:

 (ref-set current-track "Venus, the Bringer of Peace")
 -> java.lang.IllegalStateException: No transaction running

Oops. Because refs are mutable, you must protect their updates. In many languages,
you would use a lock for this purpose. In Clojure, you can use a transaction.

Transactions are wrapped in a dosync:

 (dosync & exprs)

Wrap your ref-set with a dosync, and all is well.

 (dosync (ref-set current-track "Venus, the Bringer of Peace"))
 -> "Venus, the Bringer of Peace"

The current-track reference now refers to a different track.

Transactional Properties
Like database transactions, Software Transactional Memory (STM) allows
programmers to describe reads and writes to stateful references in the scope of a
transaction. These transactions guarantee some important properties:

Updates are atomic. If you update more than one ref in a transaction, the
cumulative effect of all the updates will appear as a single instantaneous event to
anyone not inside your transaction.

Updates are consistent. Refs can specify validation functions. If any of these
functions fail, the entire transaction will fail.

Updates are isolated. Running transactions can’t see partially completed results
from other transactions.

Databases provide the additional guarantee that updates are durable. Because Clojure’s
transactions are in-memory transactions, Clojure does not guarantee that updates are
durable. If you want a durable transaction in Clojure, you should use a database.

Together, the four transactional properties are called ACID. Databases provide ACID;
Clojure’s STM provides ACI.

If you change more than one ref in a single transaction, the changes are all coordinated
to “happen at the same time” from the perspective of any code outside the transaction.
So, you can make sure that updates to current-track and current-composer are
coordinated:

 (def current-track (ref "Venus, the Bringer of Peace"))
 -> #'user/current-track
 (def current-composer (ref "Holst"))
 -> #'user/current-composer

 (dosync
 (ref-set current-track "Credo")
 (ref-set current-composer "Byrd"))
 -> "Byrd"

Because the updates are in a transaction, no other thread will ever see an updated track
with an out-of-date composer, or vice versa.

alter
The current-track example is deceptively easy, because updates to the ref are totally
independent of any previous state. Let’s build a more complex example, where
transactions need to update existing information. A simple chat application fits the bill.
First, create a message record that has a sender and some text:

src/examples/chat.clj

 (defrecord Message [sender text])

Now, you can create messages by instantiating the record:

 (->Message "Aaron" "Hello")
 -> #:user.Message{:sender "Aaron", :text "Hello"}

Users of the chat application want to see the most recent message first, so a list is a
good data structure. Create a messages reference that points to an initially empty list:

 (def messages (ref ()))

Now you need a function to add a new message to the front of messages. You could
simply deref to get the list of messages, cons the new message, and then ref-set the
updated list back into messages:

 ; bad idea
 (defn naive-add-message [msg]
 (dosync (ref-set messages (cons msg @messages))))

But there’s a better option. Why not perform the read and update in a single step?
Clojure’s alter will apply an update function to a referenced object within a
transaction:

 (alter ref update-fn & args...)

alter returns the new value of the ref within the transaction. When a transaction
successfully completes, the ref will take on its last in-transaction value. Using alter

http://media.pragprog.com/titles/shcloj3/code/src/examples/chat.clj

instead of ref-set makes the code more readable:

 (defn add-message [msg]
 (dosync (alter messages conj msg)))

Notice that the update function is conj (short for “conjoin”), not cons. This is because
conj takes arguments in an order suitable for use with alter:

 (cons item sequence)
 (conj sequence item)

The alter function calls its update-fn with the current reference value as its first
argument, as conj expects. If you plan to write your own update functions, they should
follow the same structure as conj:

 (your-func thing-that-gets-updated & optional-other-args)

Try adding a few messages to see that the code works as expected:

 (add-message (->Message "user 1" "hello"))
 -> (#:user.Message{:sender "user 1", :text "hello"})

 (add-message (->Message "user 2" "howdy"))
 -> (#:user.Message{:sender "user 2", :text "howdy"}
 #:user.Message{:sender "user 1", :text "hello"})

alter is the workhorse of Clojure’s STM and the primary means of updating refs. But
if you know a little about how the STM works, you may be able to optimize your
transactions in certain scenarios.

How STM Works: MVCC
Clojure’s STM uses a technique called Multiversion Concurrency Control (MVCC),
which is also used in several major databases. Here’s how MVCC works in Clojure.

Transaction A begins by taking a point, which is simply a number that acts as a unique
timestamp in the STM world. Transaction A has access to its own effectively private
copy of any reference it needs, associated with the point. Clojure’s persistent data
structures (Persistent Data Structures) make it cheap to provide these effectively
private copies.

During Transaction A, operations on a ref work against (and return) the transaction’s
private copy of the ref’s data, called the in-transaction value.

If at any point the STM detects that another transaction has already set/altered a ref
that Transaction A wants to set/alter, Transaction A is forced to retry. If you throw an
exception out of the dosync block, then Transaction A aborts without a retry.

If and when Transaction A commits, its heretofore private writes will become visible
to the world, associated with a single point in the transaction timeline.

Sometimes the approach implied by alter is too cautious. What if you don’t care that
another transaction altered a reference in the middle of your transaction? If in such a
situation you’d be willing to commit your changes anyway, you can beat alter’s
performance with commute.

commute
commute is a specialized variant of alter allowing for more concurrency:

 (commute ref update-fn & args...)

Of course, there’s a trade-off. Commutes are so named because they must be
commutative. That is, updates must be able to occur in any order. This gives the STM
system freedom to reorder commutes.

To use commute, replace alter with commute in your implementation of add-
message:

 (defn add-message-commute [msg]
 (dosync (commute messages conj msg)))

commute returns the new value of the ref. However, the last in-transaction value you
see from a commute will not always match the end-of-transaction value of a ref,
because of reordering. If another transaction sneaks in and alters a ref that you’re
trying to commute, the STM will not restart your transaction. Instead, it will run your
commute function again, out of order. Your transaction will never even see the ref
value that your commute function finally ran against.

Since Clojure’s STM can reorder commutes behind your back, you can only use them
when you don’t care about ordering. Literally speaking, this isn’t true for a chat
application. The list of messages most certainly has an order, so if two message adds
get reversed, the resulting list will not show correctly the order in which the messages
arrived.

Practically speaking, chat message updates are commutative enough. STM-based

reordering of messages will likely happen on time scales of microseconds or less. For
users of a chat application, there are already reorderings on much larger time scales
due to network and human latency. (Think about times that you have “spoken out of
turn” in an online chat because another speaker’s message hadn’t reached you yet.)
Since these larger reorderings are unfixable, it’s reasonable for a chat application to
ignore the smaller reorderings that might bubble up from Clojure’s STM.

Prefer alter
Many updates are not commutative. For example, consider a counter that returns an
increasing sequence of numbers. You might use such a counter to build unique IDs in
a system. The counter can be a simple reference to a number:

src/examples/concurrency.clj

 (def counter (ref 0))

You should not use commute to update the counter. commute returns the in-
transaction value of the counter at the time of the commute, but reorderings could
cause the actual end-of-transaction value to be different. This could lead to more than
one caller getting the same counter value. Instead, use alter:

 (defn next-counter [] (dosync (alter counter inc)))

Try calling next-counter a few times to verify that the counter works as expected:

 (next-counter)
 -> 1

 (next-counter)
 -> 2

In general, you should prefer alter over commute. Its semantics are easy to understand
and error proof. commute, on the other hand, requires that you think carefully about
transactional semantics. If you use alter when commute would suffice, the worst thing
that might happen is performance degradation. But if you use commute when alter is
required, you’ll introduce a subtle bug that’s difficult to detect with automated tests.

Adding Validation to Refs
Database transactions maintain consistency through various integrity checks. You can
do something similar with Clojure’s transactional memory, by specifying a validation
function when you create a ref:

http://media.pragprog.com/titles/shcloj3/code/src/examples/concurrency.clj

 (ref initial-state options*)
 ; options include:
 ; :validator validate-fn
 ; :meta metadata-map

The options to ref include an optional validation function that can throw an exception
to prevent a transaction from completing. Note that options is not a map; it’s a
sequence of key/value pairs spliced into the function call.

Continuing the chat example, add a validation function to the messages reference that
guarantees that all messages have non-nil values for :sender and :text:

src/examples/chat.clj

 (defn valid-message? [msg]
 (and (:sender msg) (:text msg)))

 (def validate-message-list #(every? valid-message? %))

 (def messages (ref () :validator validate-message-list))

This validation acts like a key constraint on a table in a database transaction. If the
constraint fails, the entire transaction rolls back. Try adding an ill-formed message
such as a simple string:

 (add-message "not a valid message")
 -> java.lang.IllegalStateException: Invalid reference state

 @messages
 -> ()

Messages that match the constraint are no problem:

 (add-message (->Message "Aaron" "Real Message"))
 -> (#:user.Message{:sender "Aaron", :text "Real Message"})

Refs are great for coordinated access to shared state, but not all tasks require such
coordination. For updating a single piece of isolated data, prefer an atom.

http://media.pragprog.com/titles/shcloj3/code/src/examples/chat.clj

Use Atoms for Uncoordinated, Synchronous Updates
Atoms are a lighter-weight mechanism than refs. Where multiple ref updates can be
coordinated in a transaction, atoms allow updates of a single value, uncoordinated with
anything else.

You create atoms with atom, which has a signature similar to ref:

 (atom initial-state options?)
 ; options include:
 ; :validator validate-fn
 ; :meta metadata-map

Returning to our music player example, you could store the current-track in an atom
instead of a ref:

 (def current-track (atom "Venus, the Bringer of Peace"))
 -> #'user/current-track

You can dereference an atom to get its value, just as you would a ref:

 (deref current-track)
 -> "Venus, the Bringer of Peace"

 @current-track
 -> "Venus, the Bringer of Peace"

Atoms don’t participate in transactions and thus do not require a dosync. To set the
value of an atom, just call reset!.

 (reset! an-atom newval)

For example, you can set current-track to "Credo":

 (reset! current-track "Credo")
 -> "Credo"

What if you want to coordinate an update of both current-track and current-composer
with an atom? The short answer is, “You can’t.” That’s the difference between refs
and atoms. If you need coordinated access, use a ref.

The longer answer is, “You can...if you’re willing to change the way you model the
problem.” What if you store the track title and composer in a map and then store the
whole map in a single atom?

 (def current-track (atom {:title "Credo" :composer "Byrd"}))
 -> #'user/current-track

Now you can update both values in a single reset!.

 (reset! current-track {:title "Spem in Alium" :composer "Tallis"})
 -> {:title "Spem in Alium", :composer "Tallis"}

Maybe you like to listen to several tracks in a row by the same composer. If so, you
want to change the track title but keep the same composer. swap! will do the trick:

 (swap! an-atom f & args)

swap! updates an-atom by calling function f on the current value of an-atom, plus any
additional args.

To change just the track title, use swap! with assoc to update only the :title:

 (swap! current-track assoc :title "Sancte Deus")
 -> {:title "Sancte Deus", :composer "Tallis"}

swap! returns the new value. Calls to swap! might be retried, if other threads are
attempting to modify the same atom. So, the function you pass to swap! should have
no side effects.

Both refs and atoms perform synchronous updates. When the update function returns,
the value is already changed. If you don’t need this level of control and can tolerate
updates happening asynchronously at some later time, prefer an agent.

Use Agents for Asynchronous Updates
Some applications have tasks that can proceed independently with minimal
coordination between tasks. Clojure agents support this style of task.

Agents have much in common with refs. Like refs, you create an agent by wrapping
some piece of initial state:

 (agent initial-state)

Create a counter agent that wraps an initial count of zero:

 (def counter (agent 0))
 -> #'user/counter

Once you have an agent, you can send the agent a function to update its state. send
queues an update-fn to run later, on a thread in a thread pool:

 (send agent update-fn & args)

Sending to an agent is much like commuting a ref. Tell the counter to inc:

 (send counter inc)
 -> #object[clojure.lang.Agent 0x7ae288e1 {:status :ready, :val 1}]

Notice that the call to send doesn’t return the new value of the agent, returning instead
the agent itself. That’s because send does not know the new value. After send queues
the inc to run later, it returns immediately.

Although send does not know the new value of an agent, the REPL might know.
Depending on whether the agent thread or the REPL thread runs first, you might see a
1 or a 0 for the :val in the previous output.

You can check the current value of an agent with deref/@, just as you would a ref. By
the time you get around to checking the counter, the inc will almost certainly have
completed on the thread pool, raising the value to 1:

 @counter
 -> 1

If the race condition between the REPL and the agent thread bothers you, there is a
solution. If you want to be sure that the agent has completed the actions you sent to it,
you can call await or await-for:

 (await & agents)

 (await-for timeout-millis & agents)

These functions cause the current thread to block until all actions sent from the current
thread or agent have completed. await-for returns nil if the timeout expires and returns
a non-nil value otherwise. await has no timeout, so be careful: await is willing to wait
forever.

Validating Agents and Handling Errors
Agents have other points in common with refs. They also can take a validation
function:

 (agent initial-state options*)
 ; options include:
 ; :validator validate-fn
 ; :meta metadata-map
 ; :error-handler handler-fn
 ; :error-mode mode-keyword (:continue or :fail)

Recreate the counter with a validator that ensures it’s a number:

 (def counter (agent 0 :validator number?))
 -> #'user/counter

Try to set the agent to a value that’s not a number by passing an update function that
ignores the current value and simply returns a string:

 (send counter (fn [_] "boo"))
 -> #object[clojure.lang.Agent 0x3a46c14f {:status :ready, :val 0}]

Everything looks fine (so far) because send still returns immediately. When the agent
tries to update itself on a pooled thread, it encounters an exception while applying the
action. Agents have two possible error modes—:fail and :continue. If no :error-
handler is supplied when the agent is created, the error mode is set to :fail, and any
exception that occurs during an action or during validation puts the agent into an
exceptional state.

When an agent is in this failed state, it can still be dereferenced and will return the last
value from before the failed action. To discover the last error on an agent, call agent-
error which returns either the failure or nil if not in a failed state:

 (agent-error counter)

-> #error {
 :cause "Invalid reference state"
 :via [{:type java.lang.IllegalStateException
 :message "Invalid reference state"
 :at [clojure.lang.ARef validate "ARef.java" 33]}]
 :trace
 [[clojure.lang.ARef validate "ARef.java" 33]
 ...]}]}

All new actions are queued until the agent is restarted using restart-agent. Once an
agent has errors, all subsequent attempts to query the agent return an error. You can
make the agent active again by calling restart-agent:

 (restart-agent counter 0)
 -> nil

 @counter
 -> 0

If an :error-handler is supplied when the agent is created, the agent will instead be in
error mode :continue. When an error occurs, the error handler is invoked and the agent
then continues as if no error occurred.

 (defn handler [agent err]
 (println "ERR!" (.getMessage err)))
 -> #'user/handler

 (def counter2 (agent 0 :validator number? :error-handler handler))
 -> #'user/counter2

 (send counter2 (fn [_] "boo"))
 | ERR! Invalid reference state
 -> #object[clojure.lang.Agent 0x5ba87f7f {:status :ready, :val 0}]

 (send counter2 inc)
 -> #object[clojure.lang.Agent 0x5ba87f7f {:status :ready, :val 0}]

 @counter2
 -> 1

Now that you know the basics of agents, let’s use them in conjunction with refs and
transactions.

Including Agents in Transactions

Transactions should not have side effects, because Clojure may retry a transaction an
arbitrary number of times. However, sometimes you want a side effect when a
transaction succeeds. Agents provide a solution. If you send an action to an agent from
within a transaction, that action is sent exactly once, if and only if the transaction
succeeds.

As an example of where this would be useful, consider an agent that writes to a file
when a transaction succeeds. You could combine such an agent with the chat example
from commute, to automatically back up chat messages. First, create a backup-agent
that stores the filename to write to:

src/examples/concurrency.clj

 (def backup-agent (agent "output/messages-backup.clj"))

Then, create a modified version of add-message. The new function add-message-
with-backup should do two additional things:

Grab the return value of commute, which is the current database of messages, in
a let binding.

While still inside a transaction, send an action to the backup agent that writes the
message database to filename. For simplicity, have the action function return
filename so that the agent uses the same filename for the next backup.

 (defn add-message-with-backup [msg]
 (dosync
 (let [snapshot (commute messages conj msg)]
 (send-off backup-agent (fn [filename]
 (spit filename snapshot)
 filename))
 snapshot)))

The new function has one other critical difference: it calls send-off instead of send to
communicate with the agent. send-off is a variant of send for actions that expect to
block, as a file write might do. send-off actions get their own expandable thread pool.
Never send a blocking function, or you may unnecessarily prevent other agents from
making progress.

Try adding some messages using add-message-with-backup:

 (add-message-with-backup (->Message "John" "Message One"))
 -> (#:user.Message{:sender "John", :text "Message One"})

http://media.pragprog.com/titles/shcloj3/code/src/examples/concurrency.clj

 (add-message-with-backup (->Message "Jane" "Message Two"))
 -> (#:user.Message{:sender "Jane", :text "Message Two"}
 #:user.Message{:sender "John", :text "Message One"})

You can check both the in-memory messages as well as the backup file messages-
backup to verify that they contain the same structure.

You could enhance the backup strategy in this example in various ways. You could
provide the option to back up less often than on every update or back up only
information that has changed since the last backup.

Since Clojure’s STM provides the ACI properties of ACID, and since writing to a file
provides the D (“durability”), it’s tempting to think that STM plus a backup agent
equals a database. This is not the case. A Clojure transaction promises only to
send/send-off an action to the agent; it does not actually perform the action under the
ACI umbrella. So for example, a transaction could complete, and then someone could
unplug the power cord before the agent writes to the database. The moral is simple. If
your problem calls for a real database, use a real database.

The Unified Update Model
As you’ve seen, refs, atoms, and agents all provide functions for updating their state by
applying a function to their previous state. This unified model for handling shared state
is one of the central concepts of Clojure. The unified functions for each reference type
are summarized in the following table.

Update Mechanism Ref Function Atom Function Agent Function
Function application alter swap! send-off

Function (commutative) commute N/A N/A

Function (nonblocking) N/A N/A send

Simple setter ref-set reset! N/A

The unified update model is by far the most important way to update refs, atoms, and
agents. The ancillary functions, on the other hand, are optimizations and options that
stem from the semantics peculiar to each API:

The opportunity for the commute optimization arises when coordinating updates.
Since only refs provide coordinated updates, commute makes sense only for refs.

Updates to refs and atoms take place on the thread they are called on, so they

provide no scheduling options. Agents update later, on a thread pool, making
blocking/nonblocking a relevant scheduling option.

Clojure’s final reference type, the var, is a different beast entirely. Vars do not
participate in the unified update model and are instead used to manage thread-local,
private state.

Managing Per-Thread State with Vars
When you call def or defn, you create a var. In all the examples so far in the book,
you pass an initial value to def, which becomes the root binding for the var. For
example, the following code creates a root binding for foo of 10:

 (def ^:dynamic foo 10)
 -> #'user/foo

The binding of foo is shared by all threads. You can check the value of foo on your
own thread:

 foo
 -> 10

You can also verify the value of foo from another thread. Create a new thread, passing
it a function that prints foo. Don’t forget to start the thread:

 user=> (.start (Thread. (fn [] (println foo))))
 -> nil
 | 10

In the previous example, the call to start returns nil, and then the value of foo is
printed from a new thread.

Most vars are content to keep their root bindings forever. However, you can create a
thread-local binding for a var with the binding macro:

 (binding [bindings] & body)

Bindings have dynamic scope. In other words, a binding is visible anywhere a thread’s
execution takes it, until the thread exits the scope where the binding began. A binding
is not visible to any other threads.

Structurally, a binding looks a lot like a let. Create a thread-local binding for foo and
check its value:

 (binding [foo 42] foo)
 -> 42

To see the difference between binding and let, create a simple function that prints the
value of foo:

 (defn print-foo [] (println foo))
 -> #'user/print-foo

Now, try calling print-foo from both a let and a binding:

 (let [foo "let foo"] (print-foo))
 | 10

 (binding [foo "bound foo"] (print-foo))
 | bound foo

As you can see, the let has no effect outside its own form, so the first print-foo prints
the root binding 10. The binding, on the other hand, stays in effect through any nested
function invocations, so the second print-foo prints bound foo.

Acting at a Distance
Vars intended for dynamic binding are sometimes called special variables. It’s good
style to name them with leading and trailing asterisks. For example, Clojure uses
dynamic binding for thread-wide options, such as the standard I/O streams *in*, *out*,
and *err*. Dynamic bindings enable action at a distance. When you change a dynamic
binding, you can change the behavior of distant functions without changing any
function arguments.

One kind of action at a distance is temporarily augmenting the behavior of a function.
In some languages this would be classified as aspect-oriented programming; in Clojure
it’s a side effect of dynamic binding. As an example, imagine that you have a function
that performs an expensive calculation. To simulate this, write a function named slow-
double that sleeps for a 10th of a second and then doubles its input.

 (defn ^:dynamic slow-double [n]
 (Thread/sleep 100)
 (* n 2))

Next, write a function named calls-slow-double that calls slow-double for each item
in [1 2 1 2 1 2]:

 (defn calls-slow-double []
 (map slow-double [1 2 1 2 1 2]))

Time a call to calls-slow-double. With six internal calls to slow-double, it should take
a little over six-tenths of a second. Note that you’ll have to run through the result with
dorun; otherwise, Clojure’s map will outsmart you by immediately returning a lazy
sequence.

 (time (dorun (calls-slow-double)))
 "Elapsed time: 601.418 msecs"

Reading the code, you can tell that calls-slow-double is slow because it does the same
work over and over again. One times two is two, no matter how many times you ask.

Calculations such as slow-double are good candidates for memoization, which we
explored in Shortcutting Recursion with Memoization . When you memoize a function,
it keeps a cache mapping past inputs to past outputs. If subsequent calls hit the cache,
they return almost immediately. Thus, you’re trading space (the cache) for time
(calculating the function again for the same inputs).

Clojure provides memoize, which takes a function and returns a memoization of that
function:

 (memoize function)

slow-double is a great candidate for memoization, but it isn’t memoized yet, and
clients like calls-slow-double already use the slow, unmemoized version. With
dynamic binding, this is no problem. Create a binding to a memoized version of slow-
double and call calls-slow-double from within the binding.

 (defn demo-memoize []
 (time
 (dorun
 (binding [slow-double (memoize slow-double)]
 (calls-slow-double)))))

With the memoized version of slow-double, calls-slow-double runs three times faster,
completing in about two-tenths of a second:

 (demo-memoize)
 "Elapsed time: 203.115 msecs"

This example demonstrates the power and the danger of action at a distance. By
dynamically rebinding a function such as slow-double, you change the behavior of
other functions such as calls-slow-double without their knowledge or consent. With
lexical binding forms such as let, it’s easy to see the entire range of your changes.
Dynamic binding is not so simple. It can change the behavior of other forms in other
files, far from the point in your source where the binding occurs.

Used occasionally, dynamic binding has great power. But it should not become your
primary mechanism for extension or reuse. Functions that use dynamic bindings are

not pure functions and can quickly lose the benefits of Clojure’s functional style.

Working with Java Callback APIs
Several Java APIs depend on callback event handlers. UI frameworks such as Swing
use event handlers to respond to user input. XML parsers such as SAX depend on the
user implementing a callback handler interface.

These callback handlers are written with mutable objects in mind. Also, they tend to be
single threaded. In Clojure, the best way to meet such APIs halfway is to use dynamic
bindings. This involves mutable references that feel almost like variables, but because
they’re used in a single-threaded setting, they don’t present any concurrency problems.

Clojure provides the set! special form for setting a thread-local dynamic binding:

 (set! var-symbol new-value)

set! should be used rarely. One of the only places in the entire Clojure core that uses
set! is the Clojure implementation of a SAX ContentHandler.

A ContentHandler receives callbacks as a parser encounters various bits of an XML
stream. In nontrivial scenarios, the ContentHandler needs to keep track of where it is
in the XML stream: the current stack of open elements, current character data, and so
on.

In Clojure-speak, you can think of a ContentHandler’s current position as a mutable
pointer to a specific spot in an immutable XML stream. It’s unnecessary to use
references in a ContentHandler, since everything happens on a single thread. Instead,
Clojure’s ContentHandler uses dynamic variables and set!. Here is the relevant detail:

 ; redacted from Clojure's xml.clj to focus on dynamic variable usage
 (startElement
 [uri local-name q-name #^Attributes atts]
 ; details omitted
 (set! *stack* (conj *stack* *current*))
 (set! *current* e)
 (set! *state* :element))
 nil)

 (endElement
 [uri local-name q-name]
 ; details omitted
 (set! *current* (push-content (peek *stack*) *current*))
 (set! *stack* (pop *stack*))

 (set! *state* :between)
 nil)

A SAX parser calls startElement when it encounters an XML start tag. The callback
handler updates three thread-local variables. The *stack* is a stack of all the elements
the current element is nested inside. The *current* is the current element, and the
state keeps track of what kind of content is inside. (This is important primarily
when inside character data, which is not shown here.)

endElement reverses the work of startElement by popping the *stack* and placing
the top of the *stack* in *current*.

It’s worth noting that this style of coding is the industry norm: objects are mutable, and
programs are single-threadedly oblivious to the possibility of concurrency. Clojure
permits this style as an explicit special case, and you should use it for interop purposes
only.

The ContentHandler’s use of set! does not leak mutable data into the rest of Clojure.
Clojure uses the ContentHandler implementation to build an immutable Clojure
structure.

You have now seen four different models for dealing with state. And since Clojure is
built atop Java, you can also use Java’s lock-based model. The models and their uses
are summarized in the following table.

Model Usage Functions
Refs and STM Coordinated, synchronous updates Pure
Atoms Uncoordinated, synchronous updates Pure
Agents Uncoordinated, asynchronous updates Any
Vars Thread-local dynamic scopes Any
Java locks Coordinated, synchronous updates Any

Let’s put these models to work in designing a small but complete application.

A Clojure Snake
The Snake game features a player-controlled snake that moves around a game grid
hunting for an apple. When your snake eats an apple, it grows longer by a segment,
and a new apple appears. If your snake reaches a certain length, you win. But if your
snake crosses over its own body, you lose.

Before you start building your own snake, take a minute to try the completed version.
Follow the instructions in the README file at the root of the sample code for the
book to start a REPL, then enter the following:

 (require '[examples.snake :refer :all])

 (game)

Select the Snake window and use the arrow keys to control your snake.

Our design for the snake takes advantage of Clojure’s functional nature and its support
for explicit mutable state by dividing the game into three layers:

The functional model will use pure functions to model as much of the game as
possible.

The mutable model will handle the mutable state of the game. The mutable model
will use one or more of the reference models discussed in this chapter. Mutable
state is much harder to test, so we’ll keep this part small.

The GUI will use Swing to draw the game and to accept input from the user.

These layers will make the Snake easy to build, test, and maintain.

As you work through this example, add your code to the file reader/snake.clj in the
sample code. When you open the file, you’ll see that it already imports/uses the Swing
classes and Clojure libraries that you’ll need:

src/reader/snake.clj

 (ns reader.snake
 (:import (java.awt Color Dimension)
 (javax.swing JPanel JFrame Timer JOptionPane)
 (java.awt.event ActionListener KeyListener))
 (:refer examples.import-static :refer :all))

http://media.pragprog.com/titles/shcloj3/code/src/reader/snake.clj

 (import-static java.awt.event.KeyEvent VK_LEFT VK_RIGHT VK_UP VK_DOWN)

Now you’re ready to build the functional model.

Other Snake Implementations
There’s more than one way to skin a snake. You may enjoy comparing the snake presented
here with these other snakes:

David Van Horn’s Snake,[30] written in Typed Scheme, has no mutable state.

Dale Vaillancourt’s Worm Game[31] includes some verifications using the theorem
prover ACL2.

Mark Volkmann wrote a Clojure Snake[32] designed for readability.

Each of the snake implementations has its own distinctive style. What would your style
look like?

The Functional Model
First, create a set of constants to describe time, space, and motion:

 (def width 75)
 (def height 50)
 (def point-size 10)
 (def turn-millis 75)
 (def win-length 5)
 (def dirs { VK_LEFT [-1 0]
 VK_RIGHT [1 0]
 VK_UP [0 -1]
 VK_DOWN [0 1]})

width and height set the size of the game board, and point-size is used to convert a
game point into screen pixels. turn-millis is the heartbeat of the game, controlling how
many milliseconds pass before each update of the game board. win-length is how
many segments your snake needs before you win the game. (Five is a small number
suitable for testing.) The dirs maps symbolic constants for the four directions to their
vector equivalents. Since Swing already defines the VK_ constants for different
directions, we’ll reuse them here rather than define our own.

Next, create some basic math functions for the game:

 (defn add-points [& pts]
 (vec (apply map + pts)))

 (defn point-to-screen-rect [pt]
 (map #(* point-size %)
 [(pt 0) (pt 1) 1 1]))

The add-points function adds points together. You can use add-points to calculate the
new position of a moving game object. For example, you can move an object at [10,
10] left by one:

 (add-points [10 10] [-1 0])
 -> [9 10]

point-to-screen-rect converts a point in game space to a rectangle on the screen:

 (point-to-screen-rect [5 10])
 -> (50 100 10 10)

Next, let’s write a function to create a new apple:

 (defn create-apple []
 {:location [(rand-int width) (rand-int height)]
 :color (Color. 210 50 90)
 :type :apple})

Apples occupy a single point, the :location, which is guaranteed to be on the game
board. Snakes are a bit more complicated:

 (defn create-snake []
 {:body (list [1 1])
 :dir [1 0]
 :type :snake
 :color (Color. 15 160 70)})

Because a snake can occupy multiple points on the board, it has a :body, which is a list
of points. Also, snakes are always in motion in some direction expressed by :dir.

Next, create a function to move a snake. This should be a pure function, returning a
new snake. Also, it should take a grow option, allowing the snake to grow after eating
an apple.

 (defn move [{:keys [body dir] :as snake} & grow]
 (assoc snake :body (cons (add-points (first body) dir)
 (if grow body (butlast body)))))

move uses a fairly complex binding expression. The {:keys [body dir]} part makes the
snake’s body and dir available as their own bindings, and the :as snake part binds
snake to the entire snake. The function proceeds as follows:

1. add-points creates a new point, which is the head of the original snake offset by
the snake’s direction of motion.

2. cons adds the new point to the front of the snake. If the snake is growing, the
entire original snake is kept. Otherwise, it keeps all the original snake except the
last segment (butlast).

3. assoc returns a new snake, which is a copy of the old snake but with an updated
:body.

Test move by moving and growing a snake:

 (move (create-snake))
 -> {:body ([2 1]), ; etc.

 (move (create-snake) :grow)
 -> {:body ([2 1] [1 1]), ; etc.

Write a win? function to test whether a snake has won the game:

 (defn win? [{body :body}]
 (>= (count body) win-length))

Test win? against different body sizes. Note that win? binds only the :body, so you
don’t need a “real” snake, just anything with a body:

 (win? {:body [[1 1]]})
 -> false

 (win? {:body [[1 1] [1 2] [1 3] [1 4] [1 5]]})
 -> true

A snake loses if its head ever comes into contact with the rest of its body. Write a
head-overlaps-body? function to test for this, and use it to define lose?:

 (defn head-overlaps-body? [{[head & body] :body}]
 (contains? (set body) head))

 (def lose? head-overlaps-body?)

Test lose? against overlapping and nonoverlapping snake bodies:

 (lose? {:body [[1 1] [1 2] [1 3]]})
 -> false

 (lose? {:body [[1 1] [1 2] [1 1]]})
 -> true

A snake eats an apple if its head occupies the apple’s location. Define an eats?
function to test this:

 (defn eats? [{[snake-head] :body} {apple :location}]
 (= snake-head apple))

Notice how clean the body of the eats? function is. All the work is done in the
bindings: {[snake-head] :body} binds snake-head to the first element of the snake’s
:body, and {apple :location} binds apple to the apple’s :location. Test eats? from the
REPL:

 (eats? {:body [[1 1] [1 2]]} {:location [2 2]})
 -> false

 (eats? {:body [[2 2] [1 2]]} {:location [2 2]})
 -> true

Finally, you need some way to turn the snake, updating its :dir:

 (defn turn [snake newdir]
 (assoc snake :dir newdir))

turn returns a new snake, with an updated direction:

 (turn (create-snake) [0 -1])
 -> {:body ([1 1]), :dir [0 -1], ; etc.

All of the code you’ve written so far is part of the functional model of the Snake game.
It’s easy to understand in part because it has no local variables and no mutable state.
As you’ll see in the next section, the amount of mutable state in the game is quite
small. (It’s even possible to implement the Snake with no mutable state, but that’s not
the purpose of this demo.)

Building a Mutable Model with STM
The mutable state of the Snake game can change in only three ways:

A game can be reset to its initial state.

Every turn, the snake updates its position. If it eats an apple, a new apple is
placed.

A snake can turn.

We’ll implement each of these changes as functions that modify Clojure refs inside a
transaction. That way, changes to the position of the snake and the apple will be
synchronous and coordinated.

reset-game is trivial:

 (defn reset-game [snake apple]
 (dosync (ref-set apple (create-apple))
 (ref-set snake (create-snake)))
 nil)

You can test reset-game by passing in some refs and then checking that they
dereference to a snake and an apple:

 (def test-snake (ref nil))
 (def test-apple (ref nil))

 (reset-game test-snake test-apple)
 -> nil

 @test-snake
 -> {:body ([1 1]), :dir [1 0], ; etc.

 @test-apple
 -> {:location [52 8], ; etc.

update-direction is even more simpler than that; it’s just a trivial wrapper around the
functional turn:

 (defn update-direction [snake newdir]
 (when newdir (dosync (alter snake turn newdir))))

Try turning your test-snake to move in the “up” direction:

 (update-direction test-snake [0 -1])
 -> {:body ([1 1]), :dir [0 -1], ; etc.

The most complicated mutating function is update-positions. If the snake eats the

apple, a new apple is created, and the snake grows. Otherwise, the snake simply
moves:

 (defn update-positions [snake apple]
 (dosync
 (if (eats? @snake @apple)
 (do (ref-set apple (create-apple))
 (alter snake move :grow))
 (alter snake move)))
 nil)

To test update-positions, reset the game:

 (reset-game test-snake test-apple)
 -> nil

Then, move the apple into harm’s way, under the snake:

 (dosync (alter test-apple assoc :location [1 1]))
 -> {:location [1 1], ; etc.

Now, after you update-positions, you should have a bigger, two-segment snake:

 (update-positions test-snake test-apple)
 -> nil

 (:body @test-snake)
 -> ([2 1] [1 1])

And that is all the mutable state of the Snake world: three functions, about a dozen
lines of code.

The Snake GUI
The Snake GUI consists of functions that paint screen objects, respond to user input,
and set up the various Swing components. Since snakes and apples are drawn from
simple points, the painting functions are simple. The fill-point function fills in a single
point:

 (defn fill-point [g pt color]
 (let [[x y width height] (point-to-screen-rect pt)]
 (.setColor g color)
 (.fillRect g x y width height)))

The paint multimethod knows how to paint snakes and apples:

1: (defmulti paint (fn [g object & _] (:type object)))
2:
3: (defmethod paint :apple [g {:keys [location color]}]
4: (fill-point g location color))
5:
6: (defmethod paint :snake [g {:keys [body color]}]
7: (doseq [point body]
8: (fill-point g point color)))

paint takes two required arguments: g is a java.awt.Graphics instance, and object is
the object to be painted. The defmulti includes an optional rest argument so that
future implementations of paint have the option of taking more arguments. (See
Defining Multimethods for an in-depth description of defmulti.) On line 3, the :apple
method of paint binds the location and color of the apple and uses them to paint a
single point on the screen. On line 6, the :snake method binds the snake’s body and
color and then uses doseq to paint each point in the body.

The meat of the UI is the game-panel function, which creates a Swing JPanel with
handlers for painting the game, updating on each timer tick, and responding to user
input:

1: (defn game-panel [frame snake apple]
- (proxy [JPanel ActionListener KeyListener] []
- (paintComponent [g]
- (proxy-super paintComponent g)
5: (paint g @snake)
- (paint g @apple))
- (actionPerformed [e]
- (update-positions snake apple)
- (when (lose? @snake)
10: (reset-game snake apple)
- (JOptionPane/showMessageDialog frame "You lose!"))
- (when (win? @snake)
- (reset-game snake apple)
- (JOptionPane/showMessageDialog frame "You win!"))
15: (.repaint this))
- (keyPressed [e]
- (update-direction snake (dirs (.getKeyCode e))))
- (getPreferredSize []
- (Dimension. (* (inc width) point-size)
20: (* (inc height) point-size)))
- (keyReleased [e])
- (keyTyped [e])))

game-panel is long but simple. It uses proxy to create a panel with a set of Swing
callback methods.

Swing calls paintComponent (line 3) to draw the panel. paintComponent calls
proxy-super to invoke the normal JPanel behavior, and then it paints the snake
and the apple.

Swing will call actionPerformed (line 7) on every timer tick. actionPerformed
updates the positions of the snake and the apple. If the game is over, the program
displays a dialog and resets the game. Finally, it triggers a repaint with (.repaint
this).

Swing calls keyPressed (line 16) in response to keyboard input. keyPressed calls
update-direction to change the snake’s direction. (If the keyboard input is not an
arrow key, the dirs function returns nil and update-direction does nothing.)

The game panel ignores keyReleased and keyTyped.

The game function creates a new game:

1: (defn game []
- (let [snake (ref (create-snake))
- apple (ref (create-apple))
- frame (JFrame. "Snake")
5: panel (game-panel frame snake apple)
- timer (Timer. turn-millis panel)]
- (doto panel
- (.setFocusable true)
- (.addKeyListener panel))
10: (doto frame
- (.add panel)
- (.pack)
- (.setVisible true))
- (.start timer)
15: [snake, apple, timer]))

On line 2, game creates all the necessary game objects: the mutable model objects
snake and apple and the UI components frame, panel, and timer. Lines 7 and 10
perform boilerplate initialization of the panel and frame. Line 14 starts the game by
kicking off the timer.

Line 15 returns a vector with the snake, apple, and time. This is for convenience when
testing at the REPL; you can use these objects to move the snake and apple or to start

and stop the game.

To start the game, use the snake library at the REPL and run game. If you entered the
code yourself, you can use the library name you picked (examples.reader in the
instructions); otherwise, you can use the completed sample at examples.snake:

 (require '[examples.snake :refer :all])
 (game)

The game window may appear behind your REPL window. If this happens, use your
local operating system fu to locate the game window.

There are many possible improvements to the Snake game. If the snake reaches the
edge of the screen, perhaps it should turn to avoid disappearing from view. Or maybe
you just lose the game. Sorry! Make the Snake game your own by improving it to suit
your personal style.

Snakes Without Refs
We chose to implement the Snake game’s mutable model using refs so we could
coordinate the updates to the snake and the apple. Other approaches are also valid. For
example, you could combine the snake and apple state into a single game object. With
only one object, coordination is no longer required, and you can use an atom instead.

The file examples/atom-snake.clj demonstrates this approach. Functions like update-
positions become part of the functional model and return a new game object with
updated state:

src/examples/atom_snake.clj

 (defn update-positions [{snake :snake, apple :apple, :as game}]
 (if (eats? snake apple)
 (merge game {:apple (create-apple) :snake (move snake :grow)})
 (merge game {:snake (move snake)})))

Notice how destructuring makes it easy to get at the internals of the game: both snake
and apple are bound by the argument list.

The actual mutable updates are now all atom swap!s. We found these to be simple
enough to leave them in the UI function game-panel, as this excerpt shows:

 (actionPerformed [e]
 (swap! game update-positions)

http://media.pragprog.com/titles/shcloj3/code/src/examples/atom_snake.clj

 (when (lose? (@game :snake))
 (swap! game reset-game)
 (JOptionPane/showMessageDialog frame "You lose!"))

There are other possibilities as well. Chris Houser’s fork of the book’s sample code[33]

demonstrates using an agent that Thread/sleeps instead of a Swing timer, as well as
using a new agent per game turn to update the game’s state.

[29]

[30]

[31]

[32]

[33]

[34]

Wrapping Up
Clojure’s reference model is the most innovative part of the language. The
combination of software transactional memory, agents, atoms, and dynamic binding
that you’ve seen in this chapter gives Clojure powerful abstractions for all sorts of
stateful systems. It also makes Clojure one of the few languages suited to the coming
generation of multicore computer hardware.

Next, we’ll look at one of Clojure’s newer features. Some call it a solution to the
“expression problem.”[34] We call it a protocol.

Footnotes

http://www.infoq.com/presentations/Simple-Made-Easy

http://planet.plt-scheme.org/package-source/dvanhorn/snake.plt/1/0/main.ss

http://dracula-lang.github.io/worm.html

http://www.ociweb.com/mark/programming/ClojureSnake.html

http://github.com/Chouser/programming-clojure

http://en.wikipedia.org/wiki/Expression_problem

Copyright © 2018, The Pragmatic Bookshelf.

http://www.infoq.com/presentations/Simple-Made-Easy
http://planet.plt-scheme.org/package-source/dvanhorn/snake.plt/1/0/main.ss
http://dracula-lang.github.io/worm.html
http://www.ociweb.com/mark/programming/ClojureSnake.html
http://github.com/Chouser/programming-clojure
http://en.wikipedia.org/wiki/Expression_problem

Chapter 7

Protocols and Datatypes

Abstractions lay at the foundation of reusable code. The Clojure language itself has
abstractions for sequences, collections, and callability. Traditionally, these abstractions
were described with Java interfaces and implemented using Java classes. In the
beginning, Clojure provided proxy and gen-class, removing the need to drop all the
way to Java to achieve this, but that changed with the introduction of protocols.

Protocols provide an alternative to Java interfaces for high-performance
polymorphic method dispatch.

Datatypes provide an alternative to Java classes for creating implementations of
abstractions defined with either protocols or interfaces.

Protocols and datatypes provide a high-performance, flexible mechanism for
abstraction and concretion that removes the need to write Java interfaces and classes
when programming in Clojure. With protocols and datatypes, you can create new
abstractions and new types that implement those abstractions and even extend new
abstractions to existing types.

In this chapter, we’ll explore Clojure’s approach to abstraction using protocols and
datatypes. First, we will implement our own version of Clojure’s built-in spit and
slurp functions. Then, we’ll take a short detour to build a CryptoVault, where you’ll
learn about extending some of Java’s standard library. Finally, we’ll put everything
together using records and protocols to define musical notes and sequences. After
working through these exercises, you will certainly see the power of Clojure’s
composable abstractions.

Programming to Abstractions
Clojure’s spit and slurp I/O functions are built on two abstractions, reading and
writing. This means you can use them with a variety of source and destination types,
including files, URLs, and sockets, and they can be extended to support new types by
anybody, whether they’re existing types or newly defined.

The slurp function takes an input source, reads the contents, and returns it as a
string.

The spit function takes an output destination and a value, converts the value to a
string, and writes it to the output destination.

We’ll start by writing basic versions of the two functions that can read from and write
to files only. We’ll then refactor the basic versions several times as we explore
different approaches to supporting additional datatypes. Working through this will give
you a good feel for the usefulness of programming to abstractions in general and the
flexibility and power of Clojure’s protocols and datatypes in particular.

After writing our versions of spit and slurp, called expectorate and gulp,
respectively, which work with several existing datatypes, we’ll create a new datatype,
CryptoVault, which can be used with our versions of the functions as well as the
originals.

The gulp function is a simplified version of Clojure’s slurp function, and expectorate,
despite its highfalutin name, is a dumbed-down version of Clojure’s spit function.
Let’s write a basic version of gulp that can read from a java.io.File only.

src/examples/gulp.clj

 (ns examples.gulp
 (:import (java.io FileInputStream InputStreamReader BufferedReader)))
 (defn gulp [src]
 (let [sb (StringBuilder.)]
 (with-open [reader (-> src
 FileInputStream.
 InputStreamReader.
 BufferedReader.)]
 (loop [c (.read reader)]
 (if (neg? c)
 (str sb)

http://media.pragprog.com/titles/shcloj3/code/src/examples/gulp.clj

 (do
 (.append sb (char c))
 (recur (.read reader))))))))

The gulp function creates a BufferedReader from a given File object and then
loops/recurs over it, reading a character at a time and appending each to a
StringBuilder until it reaches the end of the input where it returns a string. The basic
expectorate function is even smaller:

src/examples/expectorate.clj

 (ns examples.expectorate
 (:import (java.io FileOutputStream OutputStreamWriter BufferedWriter)))

 (defn expectorate [dst content]
 (with-open [writer (-> dst
 FileOutputStream.
 OutputStreamWriter.
 BufferedWriter.)]
 (.write writer (str content))))

It creates a BufferedWriter file, converts the value of the content parameter to a string,
and writes it out to the BufferedWriter.

But what if we want to support additional types like Sockets, URLs, and basic input
and output streams? We need to update gulp and expectorate to be able to make
BufferedReaders and BufferedWriters from datatypes other than files. So, let’s create
two new functions, make-reader and make-writer, that will be responsible for this
behavior.

The make-reader function makes a BufferedReader from an input source.
The make-writer makes a BufferedWriter from an output destination.

 (defn make-reader [src]
 (-> src FileInputStream. InputStreamReader. BufferedReader.))

 (defn make-writer [dst]
 (-> dst FileOutputStream. OutputStreamWriter. BufferedWriter.))

Like our basic gulp and expectorate functions, make-reader and make-writer work
only on files, but that will change shortly. Now let’s refactor gulp and expectorate to
use the new functions:

src/examples/protocols.clj

http://media.pragprog.com/titles/shcloj3/code/src/examples/expectorate.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/protocols.clj

 (defn gulp [src]
 (let [sb (StringBuilder.)]
 (with-open [reader (make-reader src)]
 (loop [c (.read reader)]
 (if (neg? c)
 (str sb)
 (do
 (.append sb (char c))
 (recur (.read reader))))))))

 (defn expectorate [dst content]
 (with-open [writer (make-writer dst)]
 (.write writer (str content))))

We can now add support for additional source and destination types to gulp and
expectorate just by updating make-reader and make-writer. One approach to
supporting additional types is to use a cond or condp statement to process different
types appropriately. For example, the following version of make-reader replaces the
call to the FileInputStream constructor with a condp statement that creates an
InputStream from the given input, whether it’s a File, Socket, or URL or already is an
InputStream.

 (defn make-reader [src]
 (-> (condp = (type src)
 java.io.InputStream src
 java.lang.String (FileInputStream. src)
 java.io.File (FileInputStream. src)
 java.net.Socket (.getInputStream src)
 java.net.URL (if (= "file" (.getProtocol src))
 (-> src .getPath FileInputStream.)
 (.openStream src)))
 InputStreamReader.
 BufferedReader.))

Here’s a version of make-writer using the same strategy:

 (defn make-writer [dst]
 (-> (condp = (type dst)
 java.io.OutputStream dst
 java.io.File (FileOutputStream. dst)
 java.lang.String (FileOutputStream. dst)
 java.net.Socket (.getOutputStream dst)
 java.net.URL (if (= "file" (.getProtocol dst))
 (-> dst .getPath FileOutputStream.)

 (throw (IllegalArgumentException.
 "Can't write to non-file URL"))))
 OutputStreamWriter.
 BufferedWriter.))

The problem with this approach is that it’s closed: nobody else can come along and
add support for new source and destination types without rewriting make-reader and
make-writer. What we need is an open solution, one where support for new types can
be added after the fact and by different parties. What we need is two abstractions, one
for reading and one for writing.

Interfaces
In Java, the usual mechanism for supporting this form of abstraction is the interface.
The interface mechanism provides a means for dispatching calls to an abstract
function, specified in an interface definition, to a specific implementation based on the
datatype of the first parameter passed in the call. In Java, the first parameter is implicit;
it’s the object that implements the interface.

Following are the strengths of interfaces:

Datatypes can implement multiple interfaces.
Interfaces provide only specification, not implementation, which allows
implementation of multiple interfaces without the problems associated with
multiple class inheritance.

The weakness of interfaces is that existing datatypes cannot be extended to implement
new interfaces without rewriting them.

We can create Java interfaces in Clojure with the definterface macro. This takes a
name and one or more method signatures:

 (definterface name & sigs)

Let’s create our abstraction for things-that-can-be-read-from-and-be-written-to as an
interface, which we’ll call IOFactory.

 (definterface IOFactory
 (^java.io.BufferReader make-reader [this])
 (^java.io.BufferedWriter make-writer [this]))

This will create an interface called IOFactory that includes two abstract functions,
make-reader and make-writer. Any class that implements this interface must include
make-reader and make-writer functions that take a single parameter and an instance
of the datatype itself and return a BufferedReader and BufferedWriter, respectively.

Unfortunately, the interfaces that a class supports are determined at design time by the
author; once a Java class is defined, it cannot be updated to support new interfaces
without rewriting it. Therefore, we can’t extend the File, Socket, and URL classes to
implement the IOFactory interface.

Like the versions of make-reader and make-writer we based on condp, our interface
is closed to extension by parties other than the author. This is part of what is called the

expression problem.[35] Fortunately, Clojure has a solution to it.[36]

Protocols
One piece of Clojure’s solution to the expression problem is the protocol. Protocols
provide a flexible mechanism for abstraction that leverages the best parts of interfaces
by providing only specification, not implementation, and by letting datatypes
implement multiple protocols. Additionally, protocols address the key weaknesses of
interfaces by allowing nonintrusive extension of existing types to support new
protocols.

Following are the strengths of protocols:

Datatypes can implement multiple protocols.

Protocols provide only specification, not implementation, which allows
implementation of multiple interfaces without the problems associated with
multiple-class inheritance.

Existing datatypes can be extended to implement new interfaces with no
modification to the datatypes.

Protocol method names are namespaced, so there’s no risk of name collision
when multiple parties choose to extend the same extant type.

The defprotocol macro works just like definterface, but now we’re able to extend
existing datatypes to implement our new abstraction.

 (defprotocol name & opts+sigs)

Let’s redefine IOFactory as a protocol, instead of an interface.

 (defprotocol IOFactory
 "A protocol for things that can be read from and written to."
 (make-reader [this] "Creates a BufferedReader.")
 (make-writer [this] "Creates a BufferedWriter."))

Notice we can include a document string for the protocol as a whole, as well as for
each of its methods. Now let’s extend java.io.InputStream and java.io.OutputStream
to implement our IOFactory protocol.

We use the extend function to associate an existing type to a protocol and to provide
the required function implementations, usually referred to as methods in this context.
The parameters to extend are the name of the type to extend, the name of the protocol

to implement, and a map of method implementations, where the keys are keywordized
versions of the method names.

 (extend type & proto+mmaps)

The make-reader implementation for an InputStream just wraps the value passed to it
in a BufferedReader.

src/examples/protocols.clj

 (extend InputStream
 IOFactory
 {:make-reader (fn [src]
 (-> src InputStreamReader. BufferedReader.))
 :make-writer (fn [dst]
 (throw (IllegalArgumentException.
 "Can't open as an InputStream.")))})

Similarly, the implementation of make-writer for an OutputStream wraps its given
input in a BufferedWriter. And since you can’t write to an InputStream or read from
an OutputStream, the respective implementations of make-writer and make-reader
throw IllegalArgumentExceptions.

 (extend OutputStream
 IOFactory
 {:make-reader (fn [src]
 (throw
 (IllegalArgumentException.
 "Can't open as an OutputStream.")))
 :make-writer (fn [dst]
 (-> dst OutputStreamWriter. BufferedWriter.))})

We can extend the java.io.File type to implement our IOFactory protocol with the
extend-type macro, which provides a slightly cleaner syntax than extend.

 (extend-type type & specs)

It takes the name of the type to extend and one or more specs, which includes a
protocol name and its respective method implementations.

 (extend-type File
 IOFactory
 (make-reader [src]
 (make-reader (FileInputStream. src)))

http://media.pragprog.com/titles/shcloj3/code/src/examples/protocols.clj

 (make-writer [dst]
 (make-writer (FileOutputStream. dst))))

Notice that we create an InputStream, specifically, a FileInputStream, from our file
and then make a recursive call to make-reader, which will be dispatched to the
implementation defined earlier for InputStreams. We use the same recursive pattern
for the make-writer method, as well as for the methods of the following remaining
types.

We can extend the remaining types all at once with the extend-protocol macro:

 (extend-protocol protocol & specs)

This takes the name of the protocol followed by one or more type names with their
respective method implementations.

 (extend-protocol IOFactory
 Socket
 (make-reader [src]
 (make-reader (.getInputStream src)))

 (make-writer [dst]
 (make-writer (.getOutputStream dst)))

 URL
 (make-reader [src]
 (make-reader
 (if (= "file" (.getProtocol src))
 (-> src .getPath FileInputStream.)
 (.openStream src))))

 (make-writer [dst]
 (make-writer
 (if (= "file" (.getProtocol dst))
 (-> dst .getPath FileInputStream.)
 (throw (IllegalArgumentException.
 "Can't write to non-file URL"))))))

Now let’s put it all together.

 (ns examples.io
 (:import (java.io File FileInputStream FileOutputStream
 InputStream InputStreamReader
 OutputStream OutputStreamWriter
 BufferedReader BufferedWriter)

 (java.net Socket URL)))

 (defprotocol IOFactory
 "A protocol for things that can be read from and written to."
 (make-reader [this] "Creates a BufferedReader.")
 (make-writer [this] "Creates a BufferedWriter."))

 (defn gulp [src]
 (let [sb (StringBuilder.)]
 (with-open [reader (make-reader src)]
 (loop [c (.read reader)]
 (if (neg? c)
 (str sb)
 (do
 (.append sb (char c))
 (recur (.read reader))))))))

 (defn expectorate [dst content]
 (with-open [writer (make-writer dst)]
 (.write writer (str content))))

 (extend-protocol IOFactory
 InputStream
 (make-reader [src]
 (-> src InputStreamReader. BufferedReader.))

 (make-writer [dst]
 (throw
 (IllegalArgumentException.
 "Can't open as an InputStream.")))

 OutputStream
 (make-reader [src]
 (throw
 (IllegalArgumentException.
 "Can't open as an OutputStream.")))

 (make-writer [dst]
 (-> dst OutputStreamWriter. BufferedWriter.))

 File
 (make-reader [src]
 (make-reader (FileInputStream. src)))

 (make-writer [dst]

 (make-writer (FileOutputStream. dst)))

 Socket
 (make-reader [src]
 (make-reader (.getInputStream src)))

 (make-writer [dst]
 (make-writer (.getOutputStream dst)))

 URL
 (make-reader [src]
 (make-reader
 (if (= "file" (.getProtocol src))
 (-> src .getPath FileInputStream.)
 (.openStream src))))

 (make-writer [dst]
 (make-writer
 (if (= "file" (.getProtocol dst))
 (-> dst .getPath FileInputStream.)
 (throw (IllegalArgumentException.
 "Can't write to non-file URL"))))))

Datatypes
We’ve shown how to extend existing types to implement new abstractions with
protocols, but what if we want to create a new type in Clojure? That’s where datatypes
come in.

A datatype provides the following:

A unique class, either named or anonymous
Structure, either explicitly as fields or implicitly as a closure
Fields that can have type hints and can be primitive
Immutability on by default
Unification with maps (via records)
Optional implementations of abstract methods specified in protocols or interfaces

We will use the deftype macro to define a new datatype, called CryptoVault, that will
implement two protocols, including IOFactory.

Now that gulp and expectorate support several existing Java classes, let’s create a
new supported type, CryptoVault. You’ll create an instance of a CryptoVault by
passing in an argument that implements the clojure.java.io.IOFactory protocol (not the
one we’ve defined here), a path to a cryptographic key store, and a password. The
contents expectorated into the CryptoVault will be encrypted and written to the
IOFactory object and then decrypted when gulped back in.

We’ll use deftype to create the new type.

 (deftype name [& fields] & opts+specs)

It takes the name of the type and a vector of fields contained by the type. The naming
convention for datatypes is the same as used by Java classes, i.e., CamelCase.

 user=> (deftype CryptoVault [filename keystore password])
 user.CryptoVault

Once the type has been defined, we can create an instance of our CryptoVault:

 user=> (def vault (->CryptoVault "vault-file" "keystore" "toomanysecrets"
))

 #'user/vault

And its fields can be accessed using the same prefix-dot syntax used to access fields in
Java objects.

 user=> (.filename vault)
 "vault-file"

 user=> (.keystore vault)
 "keystore"

 user=> (.password vault)
 "toomanysecrets"

Now that we’ve defined the basic CryptoVault type, let’s add behavior with some
methods. Datatypes can implement only those methods that have been specified in
either a protocol or an interface, so let’s first create a Vault protocol.

 (defprotocol Vault
 (init-vault [vault])
 (vault-output-stream [vault])
 (vault-input-stream [vault]))

The protocol includes three functions—init-vault, vault-output-stream, and vault-
input-stream—that every Vault must implement.

We can define our new type’s methods inline with deftype; we just pass the type
name and vector of fields as before, followed by a protocol name and one or more
method bodies:

src/examples/cryptovault.clj

 (ns examples.cryptovault
 (:require [examples.io :refer [IOFactory make-reader make-writer]])
 (:require [clojure.java.io :as io])
 (:import (java.security KeyStore KeyStore$SecretKeyEntry
 KeyStore$PasswordProtection)
 (javax.crypto KeyGenerator Cipher CipherOutputStream
 CipherInputStream)
 (java.io FileOutputStream)))
 (deftype CryptoVault [filename keystore password]
 Vault
 (init-vault [vault]
 ... define method body here ...)

 (vault-output-stream [vault]
 ... define method body here ...)

 (vault-input-stream [vault]

http://media.pragprog.com/titles/shcloj3/code/src/examples/cryptovault.clj

 ... define method body here ...)

 IOFactory
 (make-reader [vault]
 (make-reader (vault-input-stream vault)))
 (make-writer [vault]
 (make-writer (vault-output-stream vault))))

Notice that the methods for more than one protocol can be defined inline; we’ve
defined the methods for the Vault and IOFactory protocols together, although the
bodies of the Vault methods have been elided and will be described next.

The init-vault method will generate an Advanced Encryption Standard (AES) key,
place it in a java.security.KeyStore, write the keystore data to the file specified by the
keystore field in the CryptoVault, and then password-protect it.

 (init-vault [vault]
 (let [password (.toCharArray (.password vault))
 key (.generateKey (KeyGenerator/getInstance "AES"))
 keystore (doto (KeyStore/getInstance "JCEKS")
 (.load nil password)
 (.setEntry "vault-key"
 (KeyStore$SecretKeyEntry. key)
 (KeyStore$PasswordProtection. password)))]
 (with-open [fos (FileOutputStream. (.keystore vault))]
 (.store keystore fos password))))

Both the vault-output-stream and vault-input-stream methods will use a function,
vault-key, to load the keystore associated with the CryptoVault and extract the AES
key used to encrypt and decrypt the contents of the vault.

 (defn vault-key [vault]
 (let [password (.toCharArray (.password vault))]
 (with-open [fis (FileInputStream. (.keystore vault))]
 (-> (doto (KeyStore/getInstance "JCEKS")
 (.load fis password))
 (.getKey "vault-key" password)))))

The vault-output-stream method uses the vault-key method to initialize an AES
cipher object, creates an OutputStream from the Vault’s filename, and then uses the
cipher and OutputStream to create an instance of a CipherOutputStream.

 (vault-output-stream [vault]
 (let [cipher (doto (Cipher/getInstance "AES")

 (.init Cipher/ENCRYPT_MODE (vault-key vault)))]
 (CipherOutputStream. (io/output-stream (.filename vault)) cipher)))

vault-input-stream works like vault-output-stream, but returns a
CipherInputStream.

 (vault-input-stream [vault]
 (let [cipher (doto (Cipher/getInstance "AES")
 (.init Cipher/DECRYPT_MODE (vault-key vault)))]
 (CipherInputStream. (io/input-stream (.filename vault)) cipher)))

To create an instance of a CryptoVault, just pass the location where data should be
stored, the keystore filename, and the password protecting the keystore. If the keystore
hasn’t been initialized, then call the init-vault method:

 user=> (def vault (->CryptoVault "vault-file" "keystore" "toomanysecrets"
))

 #'user/vault

 user=> (init-vault vault)
 nil

Then use the CryptoVault like any other source/destination used by gulp and
expectorate.

 user=> (expectorate vault "This is a test of the CryptoVault")
 nil

 user=> (gulp vault)
 "This is a test of the CryptoVault"

We can use the CryptoVault with the built-in spit and slurp functions by extending it
to support the clojure.java.io/IOFactory protocol. This version of the IOFactory has
four methods, instead of two like ours, and there are default method implementations
defined in a map called default-streams-impl. We’ll override just two of its methods,
make-input-stream and make-output-stream, by assoc’ing our new implementations
into this map and passing it to the extend function.

 (extend CryptoVault
 clojure.java.io/IOFactory
 (assoc clojure.java.io/default-streams-impl
 :make-input-stream (fn [x opts] (vault-input-stream x))
 :make-output-stream (fn [x opts] (vault-output-stream x))))

That’s it; now we can read and write to a CryptoVault using slurp and spit.

 user=> (spit vault "This is a test of the CryptoVault using spit and
slurp")

 nil

 user=> (slurp vault)
 "This is a test of the CryptoVault using spit and slurp"

Let’s put all the pieces together in a .clj file. Make a src/examples/datatypes
subdirectory within your project directory, and create a file called vault.clj.

src/examples/cryptovault_complete.clj

 (ns examples.cryptovault-complete
 (:require [clojure.java.io :as io]
 [examples.protocols.io :as proto])
 (:import (java.security KeyStore KeyStore$SecretKeyEntry
 KeyStore$PasswordProtection)
 (javax.crypto Cipher KeyGenerator CipherOutputStream
 CipherInputStream)
 (java.io FileInputStream FileOutputStream)))
 (defprotocol Vault
 (init-vault [vault])
 (vault-output-stream [vault])
 (vault-input-stream [vault]))
 (defn vault-key [vault]
 (let [password (.toCharArray (.password vault))]
 (with-open [fis (FileInputStream. (.keystore vault))]
 (-> (doto (KeyStore/getInstance "JCEKS")
 (.load fis password))
 (.getKey "vault-key" password)))))
 (deftype CryptoVault [filename keystore password]
 Vault
 (init-vault [vault]
 (let [password (.toCharArray (.password vault))
 key (.generateKey (KeyGenerator/getInstance "AES"))
 keystore (doto (KeyStore/getInstance "JCEKS")
 (.load nil password)
 (.setEntry "vault-key"
 (KeyStore$SecretKeyEntry. key)
 (KeyStore$PasswordProtection.

password)))]
 (with-open [fos (FileOutputStream. (.keystore vault))]
 (.store keystore fos password))))

 (vault-output-stream [vault]

http://media.pragprog.com/titles/shcloj3/code/src/examples/cryptovault_complete.clj

 (let [cipher (doto (Cipher/getInstance "AES")
 (.init Cipher/ENCRYPT_MODE (vault-key vault)))]
 (CipherOutputStream. (io/output-stream (.filename vault)) cipher)))

 (vault-input-stream [vault]
 (let [cipher (doto (Cipher/getInstance "AES")
 (.init Cipher/DECRYPT_MODE (vault-key vault)))]
 (CipherInputStream. (io/input-stream (.filename vault)) cipher)))

 proto/IOFactory
 (make-reader [vault]
 (proto/make-reader (vault-input-stream vault)))
 (make-writer [vault]
 (proto/make-writer (vault-output-stream vault))))

 (extend CryptoVault
 clojure.java.io/IOFactory
 (assoc io/default-streams-impl
 :make-input-stream (fn [x opts] (vault-input-stream x))
 :make-output-stream (fn [x opts] (vault-output-stream x))))

Records
Classes in object-oriented programs tend to fall into two distinct categories: those that
represent programming artifacts, such as String, Socket, InputStream, and
OutputStream, and those that represent application domain information, such as
Employee and PurchaseOrder.

Unfortunately, using classes to model application domain information hides it behind a
class-specific micro-language of setters and getters. You can no longer take a generic
approach to information processing, and you end up with a proliferation of
unnecessary specificity and reduced reusability. See Clojure’s documentation on
datatypes[37] for more information.

For this reason, Clojure has always encouraged the use of maps for modeling such
information, and that holds true even with datatypes, which is where records come in.
A record is a datatype, like those created with deftype, that also implements
PersistentMap and therefore can be used like any other map (mostly); and since
records are also proper classes, they support type-based polymorphism through
protocols. With records, we have the best of both worlds: maps that can implement
protocols.

What could be more natural than using records to play music? So, let’s create a record
that represents a musical note, with fields for pitch, octave, and duration; then we’ll
use the JDK’s built-in MIDI synthesizer to play sequences of these notes.

Since records are maps, we’ll be able to change the properties of individual notes using
the assoc and update-in functions, and we can create or transform entire sequences of
notes using map and reduce. This gives us access to the entirety of Clojure’s
collection API.

We’ll create a Note record with the defrecord macro, which behaves like deftype.

 (defrecord name [& fields] & opts+specs)

A Note record has three fields: pitch, octave, and duration.

 (defrecord Note [pitch octave duration])
 -> user.Note

The pitch will be represented by a keyword like :C, :C#, and :Db, which represent the
notes C, C♯ (C sharp), and D♭ (D flat), respectively. Each pitch can be played at

different octaves; for instance, middle C is in the fourth octave. Duration indicates the
note length; a whole note is represented by 1, a half note by 1/2, a quarter note by 1/4,
and a 16th note by 1/16. For example, we can represent a D♯ half note in the fourth
octave with this Note record:

 (->Note :D# 4 1/2)
 -> #user.Note{:pitch :D#, :octave 4, :duration 1/2}

We can treat records like any other datatype, accessing their fields with the dot syntax.

 (.pitch (->Note :D# 4 1/2))
 -> :D#

But records are also map-like:

 (map? (->Note :D# 4 1/2))
 -> true

so we can also access their fields using keywords:

 (:pitch (->Note :D# 4 1/2))
 -> :D#

We can create modified records with assoc and update-in.

 (assoc (->Note :D# 4 1/2) :pitch :Db :duration 1/4)
 -> #user.Note{:pitch :Db, :octave 4, :duration 1/4}

 (update-in (->Note :D# 4 1/2) [:octave] inc)
 -> #user.Note{:pitch :D#, :octave 5, :duration 1/2}

Records are open, so we can associate extra fields into a record:

 (assoc (->Note :D# 4 1/2) :velocity 100)
 -> #user.Note{:pitch :D#, :octave 4, :duration 1/2, :velocity 100}

Use the optional :velocity field to represent the force with which a note is played.

When used on a record, both assoc and update-in return a new record, but the dissoc
function works a bit differently; it will return a new record if the field being
dissociated is optional, like velocity in the previous example, but it will return a plain
map if the field is mandated by the defrecord specification, like pitch, octave, or
duration.

In other words, if you remove a required field from a record of a given type, it’s no

longer a record of that type, and it simply becomes a map.

 (dissoc (->Note :D# 4 1/2) :octave)
 -> {:pitch :D#, :duration 1/2}

Notice that dissoc returns a map, not a record. One difference between records and
maps is that, unlike maps, records are not functions of keywords.

 ((->Note. :D# 4 1/2) :pitch)
 -> user.Note cannot be cast to clojure.lang.IFn

ClassCastException is thrown because records do not implement the IFn interface like
maps do. This is by design and drives a stylistic difference that makes code more
readable.

When accessing a collection, you should place the collection first. When accessing a
map that’s acting (conceptually) as a data record, you should place the keyword first,
even if the record is implemented as a plain map. Now that we have our basic Note
record, let’s add some methods so we can play them with the JDK’s built-in MIDI
synthesizer. We’ll start by creating a MidiNote protocol with three methods:

src/examples/protocols.clj

 (defprotocol MidiNote
 (to-msec [this tempo])
 (key-number [this])
 (play [this tempo midi-channel]))

To play our note with the MIDI synthesizer, we need to translate its pitch and octave
into a MIDI key number and its duration into milliseconds. Here, we’ve defined to-
msec, key-number, and play, which we will use to create our MidiNote.

to-msec returns the duration of the note in milliseconds.
key-number returns the MIDI key number corresponding to this note.
play plays this note at the given tempo on the given channel.

Now let’s extend our Note record to implement the MidiNote protocol.

 (import 'javax.sound.midi.MidiSystem)
 (extend-type Note
 MidiNote
 (to-msec [this tempo]
 (let [duration-to-bpm {1 240, 1/2 120, 1/4 60, 1/8 30, 1/16 15}]
 (* 1000 (/ (duration-to-bpm (:duration this))

http://media.pragprog.com/titles/shcloj3/code/src/examples/protocols.clj

 tempo))))

The to-msec function translates the note’s duration from whole note, half note, quarter
note, and so on, into milliseconds based on the given tempo, which is represented in
beats per minute (bpm).

 (key-number [this]
 (let [scale {:C 0, :C# 1, :Db 1, :D 2,
 :D# 3, :Eb 3, :E 4, :F 5,
 :F# 6, :Gb 6, :G 7, :G# 8,
 :Ab 8, :A 9, :A# 10, :Bb 10,
 :B 11}]
 (+ (* 12 (inc (:octave this)))
 (scale (:pitch this)))))

The key-number function maps the keywords used to represent pitch into a number
ranging from 0 to 11 [1] and then uses this number along with the given octave to find
the corresponding MIDI key-number.

 (play [this tempo midi-channel]
 (let [velocity (or (:velocity this) 64)]
 (.noteOn midi-channel (key-number this) velocity)
 (Thread/sleep (to-msec this tempo)))))

Finally, the play method takes a note, a tempo, and a MIDI channel; sends a noteOn
message to the channel; and then sleeps for the note’s duration. The note continues to
play even while the current thread is asleep, stopping only when the next note is sent to
the channel.

Now we need a function that sets up the MIDI synthesizer and plays a sequence of
notes:

 (defn perform [notes & {:keys [tempo] :or {tempo 120}}]
 (with-open [synth (doto (MidiSystem/getSynthesizer) .open)]
 (let [channel (aget (.getChannels synth) 0)]
 (doseq [note notes]
 (play note tempo channel)))))

The perform function takes a sequence of notes and an optional tempo value, opens a
MIDI synthesizer, gets a channel from it, and then calls each note’s play method.

All the pieces are in place, so let’s make music using a sequence of Note records:

 (def close-encounters [(->Note :D 3 1/2)

 (->Note :E 3 1/2)
 (->Note :C 3 1/2)
 (->Note :C 2 1/2)
 (->Note :G 2 1/2)])
 -> #'user/close-encounters

In this case, our “music” consists of the five notes used to greet the alien ships in the
movie Close Encounters of the Third Kind. To play it, just pass the sequence to the
perform function:

 (perform close-encounters)
 -> nil

We can also generate sequences of notes dynamically with the for macro.

 (def jaws (for [duration [1/2 1/2 1/4 1/4 1/8 1/8 1/8 1/8]
 pitch [:E :F]]
 (Note. pitch 2 duration)))
 -> #'user/jaws

 (perform jaws)
 -> nil

The result is the shark theme from Jaws—a sequence of alternating E and F notes
progressively speeding up as they move from half notes to quarter notes to eighth
notes.

Since notes are records and records are map-like, we can manipulate them with any
Clojure function that works on maps. For instance, we can map the update-in function
across the Close Encounters sequence to raise or lower its octave.

 (perform (map #(update-in % [:octave] inc) close-encounters))
 -> nil

 (perform (map #(update-in % [:octave] dec) close-encounters))
 -> nil

Or we can create a sequence of notes that have progressively larger values of the
optional :velocity field:

 (perform (for [velocity [64 80 90 100 110 120]]
 (assoc (Note. :D 3 1/2) :velocity velocity)))
 -> nil

This results in a sequence of increasingly more forceful D notes. Manipulating

sequences is a particular strength of Clojure, so there are endless possibilities for
programmatically creating and manipulating sequences of Note records.

Let’s put the MidiNote protocol, the Note record, and the perform function together
in a Clojure source file called src/examples/midi.clj so we can use them in the future.

src/examples/midi.clj

 (ns examples.datatypes.midi
 (:import [javax.sound.midi MidiSystem]))
 (defprotocol MidiNote
 (to-msec [this tempo])
 (key-number [this])
 (play [this tempo midi-channel]))

 (defn perform [notes & {:keys [tempo] :or {tempo 88}}]
 (with-open [synth (doto (MidiSystem/getSynthesizer).open)]
 (let [channel (aget (.getChannels synth) 0)]
 (doseq [note notes]
 (play note tempo channel)))))

 (defrecord Note [pitch octave duration]
 MidiNote
 (to-msec [this tempo]
 (let [duration-to-bpm {1 240, 1/2 120, 1/4 60, 1/8 30, 1/16 15}]
 (* 1000 (/ (duration-to-bpm (:duration this))
 tempo))))
 (key-number [this]
 (let [scale {:C 0, :C# 1, :Db 1, :D 2,
 :D# 3, :Eb 3, :E 4, :F 5,
 :F# 6, :Gb 6, :G 7, :G# 8,
 :Ab 8, :A 9, :A# 10, :Bb 10,
 :B 11}]
 (+ (* 12 (inc (:octave this)))
 (scale (:pitch this)))))
 (play [this tempo midi-channel]
 (let [velocity (or (:velocity this) 64)]
 (.noteOn midi-channel (key-number this) velocity)
 (Thread/sleep (to-msec this tempo)))))

http://media.pragprog.com/titles/shcloj3/code/src/examples/midi.clj

reify
The reify macro lets you create an anonymous instance of a datatype that implements
either a protocol or an interface. Note that you get access by closure, not by
declaration. This is because there are no declared members.

 (reify & opts+specs)

reify, like deftype and defrecord, takes the name of one or more protocols, or
interfaces, and a series of method bodies. Unlike deftype and defrecord, it doesn’t
take a name or a vector of fields; datatype instances produced with reify don’t have
explicit fields, relying instead on closures.

Let’s compose some John Cage--style[38] aleatoric music[39] or, better yet, create an
aleatoric music generator. We’ll use reify to create an instance of a MidiNote that will
play a different random note each time its play method is called.

src/examples/generator.clj

 (import '[examples.datatypes.midi MidiNote])
 (let [min-duration 250
 min-velocity 64
 rand-note (reify
 MidiNote
 (to-msec [this tempo] (+ (rand-int 1000) min-duration))
 (key-number [this] (rand-int 100))
 (play [this tempo midi-channel]
 (let [velocity (+ (rand-int 100) min-velocity)]
 (.noteOn midi-channel (key-number this) velocity)
 (Thread/sleep (to-msec this tempo)))))]
 (perform (repeat 15 rand-note)))

The first thing we need to do is import (not use or require) our MidiNote protocol from
the examples.midi namespace. Next we bind two values, min-duration and min-
velocity, that we will use in the MidiNote method implementations. Then we use reify
to create an instance of an anonymous type, which implements the MidiNote protocol,
that will select a random note, duration, and velocity each time its play method is
called. Finally, we use the repeat function to create a sequence of 15 notes, consisting
of a single instance of rand-note, and perform it. Voila, you now have a virtual John
Cage!

http://media.pragprog.com/titles/shcloj3/code/src/examples/generator.clj

[35]

[36]

[37]

[38]

[39]

Wrapping Up
We covered a lot of ground in this chapter, from the general use of abstraction in
programming to some (but not all) of the specific abstraction mechanisms Clojure
provides. We explored creating concrete abstractions using protocols in Clojure and
had some fun in the process!

But there’s still more. Clojure’s macro implementation is easy to learn and use
correctly for common tasks and yet powerful enough for the harder macro-related
tasks. In the next chapter, you’ll see how Clojure is bringing macros to mainstream
programming.

Footnotes

http://lambda-the-ultimate.org/node/2232

http://www.ibm.com/developerworks/java/library/j-clojure-protocols/?ca=drs-

https://clojure.org/reference/datatypes

http://en.wikipedia.org/wiki/John_Cage

http://en.wikipedia.org/wiki/Aleatoric_music

Copyright © 2018, The Pragmatic Bookshelf.

http://lambda-the-ultimate.org/node/2232
http://www.ibm.com/developerworks/java/library/j-clojure-protocols/?ca=drs-
https://clojure.org/reference/datatypes
http://en.wikipedia.org/wiki/John_Cage
http://en.wikipedia.org/wiki/Aleatoric_music

Chapter 8

Macros

Macros give Clojure great power. With most programming techniques, you build
features within the language. When you write macros, it’s more accurate to say that
you’re “adding features to” the language. This is a powerful capability, so you should
follow the rules in this chapter until you have enough experience to decide for yourself
when to deviate. We’ll explore an example of how to use macros to add a new feature
to Clojure.

While powerful, macros are not always simple. Clojure works to make macros as
simple as is feasible by including conveniences to solve many common problems that
occur when writing macros. We’ll explain these problems and show how Clojure
mitigates them.

Macros are so different from other programming idioms that you may struggle to know
when to use them. There’s no better guide than the shared experience of the
community, so we’ll close the chapter by introducing a taxonomy of Clojure macros,
based on the macros in Clojure and contrib libraries.

When to Use Macros
In 1996, author Chuck Palahniuk released the novel “Fight Club”, which was later
made into a movie. The so-called fight club in the story had a set of rules. The first
rule of fight club was, "You don’t talk about fight club."

In a similar spirit, we introduce Macro Club. Macro Club has two rules, plus one
exception. The first rule of Macro Club is Don’t Write Macros. Macros are complex,
and they require you to think carefully about the interplay of macro expansion time
and compile time. If you can write it as a function, think twice before using a macro.

The second rule of Macro Club is Write Macros If That Is the Only Way to
Encapsulate a Pattern. All programming languages provide some way to encapsulate
patterns, but without macros these mechanisms are incomplete. In most languages, you
sense that incompleteness whenever you say, “My life would be easier if only my
language had feature X.” In Clojure, you just implement feature X using a macro.

The exception to the rule is that you can write any macro that makes life easier for
your callers when compared with an equivalent function. But to understand this
exception, you need some practice writing macros and comparing them to functions.
So, let’s get started with an example.

Writing a Control Flow Macro
Clojure provides the if special form as part of the language:

 (if (= 1 1) (println "yep, math still works today"))
 | yep, math still works today

Some languages have an unless, which is (almost) the opposite of if. unless performs
a test and then executes its body only if the test is logically false.

Clojure doesn’t have unless, but it does have an equivalent macro called when-not.
For the sake of having a simple example to start with, let’s pretend that when-not
doesn’t exist and create an implementation of unless. To follow the rules of Macro
Club, begin by trying to write unless as a function:

src/examples/macros.clj

 ; This is doomed to fail...
 (defn unless [expr form]
 (if expr nil form))

Check that unless correctly evaluates its form when its test expr is false:

 (unless false (println "this should print"))
 | this should print

Things look fine so far. But let’s be diligent and test the true case, too:

 (unless true (println "this should not print"))
 | this should not print

Clearly something has gone wrong. The problem is that Clojure evaluates all the
arguments before passing them to a function, so the println is called before
unless ever sees it. In fact, both calls to unless earlier call println too soon, before
entering the unless function. To see this, add a println inside unless:

 (defn unless [expr form]
 (println "About to test...")
 (if expr nil form))

Now you can clearly see that function arguments are always evaluated before they are
passed to unless:

http://media.pragprog.com/titles/shcloj3/code/src/examples/macros.clj

 (unless false (println "this should print"))
 | this should print
 | About to test...

 (unless true (println "this should not print"))
 | this should not print
 | About to test...

Macros solve this problem, because they don’t evaluate their arguments immediately.
Instead, you get to choose when (and if!) the arguments to a macro are evaluated.

When Clojure encounters a macro, it processes it in two steps. First, it expands
(executes) the macro and substitutes the result back into the program. This is called
macro expansion time. Then, it continues with the normal compile time.

To write unless, you need to write Clojure code to perform the following translation at
macro expansion time:

 (unless expr form) -> (if expr nil form)

Then, you need to tell Clojure that your code is a macro by using defmacro, which
looks almost like defn:

 (defmacro name doc-string? attr-map? [params*] body)

Because Clojure code is just Clojure data, you already have all the tools you need to
write unless. Write the unless macro using list to build the if expression:

 (defmacro unless [expr form]
 (list 'if expr nil form))

The body of unless executes at macro expansion time, producing an if form for
compilation. If you enter this expression at the REPL:

 (unless false (println "this should print"))

then Clojure will (invisibly to you) expand the unless form into the following:

 (if false nil (println "this should print"))

Then, Clojure compiles and executes the expanded if form. Verify that unless works
correctly for both true and false:

 (unless false (println "this should print"))
 | this should print

 -> nil

 (unless true (println "this should not print"))
 -> nil

Congratulations, you have written your first macro. unless may seem pretty simple,
but consider this: what you have just done is impossible in most languages. In
languages without macros, special forms get in the way.

Special Forms, Design Patterns, and Macros
Clojure has no special syntax for code. Code is composed of data structures. This is
true for normal functions but also for special forms and macros.

Consider a language with more syntactic variety, such as Java. In Java, the most
flexible mechanism for writing code is the instance method. Imagine that you’re
writing a Java program. If you discover a recurring pattern in some instance methods,
you have the entire Java language at your disposal to encapsulate that recurring
pattern.

Good so far. But Java also has lots of “special forms” (although they’re not normally
called by that name). Unlike Clojure special forms, which are just Clojure data, each
Java special form has its own syntax. For example, if is a special form in Java. If you
discover a recurring pattern of usage involving if, there’s no way to encapsulate that
pattern. You can’t create an unless, so you’re stuck simulating unless with an
idiomatic usage of if:

 if (!something) ...

This may seem like a relatively minor problem. Java programmers can certainly learn
to mentally make the translation from if (!foo) to unless (foo). But the problem is not
just with if: every distinct syntactic form in the language inhibits your ability to
encapsulate recurring patterns involving that form.

As another example, Java new is a special form. Polymorphism is not available for
new, so you must simulate polymorphism, for example with an idiomatic usage of a
class method:

 Widget w = WidgetFactory.makeWidget(...)

This idiom is a little bulkier. It introduces a whole new class, WidgetFactory. This
class is meaningless in the problem domain and exists only to work around the
constructor special form. Unlike the unless idiom, the “polymorphic instantiation”

idiom is complicated enough that there’s more than one way to implement a solution.
Thus, the idiom should more properly be called a design pattern.

Wikipedia defines a design pattern[40] to be a “general reusable solution to a commonly
occurring problem in software design.” It goes on to state that a “design pattern is not a
finished design that can be transformed directly (emphasis added) into code.”

That’s where macros fit in. Macros provide a layer of indirection so that you can
automate the common parts of any recurring pattern. Macros and code-as-data work
together, enabling you to reprogram your language on the fly to encapsulate patterns.

Of course, this argument doesn’t go entirely in one direction. Many people would
argue that having a bunch of special syntactic forms makes a programming language
easier to learn or read. We do not agree, but even if we did, we’d be willing to trade
syntactic variety for a powerful macro system. Once you get used to code as data, the
ability to automate design patterns is a huge payoff.

Expanding Macros
When you created the unless macro, you quoted the symbol if:

 (defmacro unless [expr form]
 (list 'if expr nil form))

But you didn’t quote any other symbols. To understand why, you need to think
carefully about what happens at macro expansion time:

By quoting if, you prevent Clojure from evaluating if at macro expansion time.
Instead, evaluation strips off the quote, leaving if to be compiled.

You don’t want to quote expr and form, because they’re macro arguments.
Clojure will substitute them without evaluation at macro expansion time.

You don’t need to quote nil, since nil evaluates to itself.

Thinking about what needs to be quoted can get complicated quickly. Fortunately, you
don’t have to do this work in your head. Clojure includes diagnostic functions so that
you can test macro expansions at the REPL.

The function macroexpand-1 shows you what happens at macro expansion time:

 (macroexpand-1 form)

Use macroexpand-1 to prove that unless expands to a sensible if expression:

 (macroexpand-1 '(unless false (println "this should print")))
 -> (if false nil (println "this should print"))

Macros are complicated beasts, and we cannot overstate the importance of testing them
with macroexpand-1. Let’s go back and try some incorrect versions of unless. Here’s
one that incorrectly quotes the expr:

 (defmacro bad-unless [expr form]
 (list 'if 'expr nil form))

When you expand bad-unless, you’ll see that it generates the symbol expr, instead of
the actual test expression:

 (macroexpand-1 '(bad-unless false (println "this should print")))
 -> (if expr nil (println "this should print"))

If you try to actually use the bad-unless macro, Clojure will complain that it can’t
resolve the symbol expr:

 (bad-unless false (println "this should print"))
 -> java.lang.Exception: Unable to resolve symbol: expr in this context

Sometimes macros expand into other macros. When this happens, Clojure will
continue to expand all macros, until only normal code remains. For example, the ..
macro expands recursively, producing a dot operator call, wrapped in another .. to
handle any arguments that remain. You can see this with the following macro
expansion:

 (macroexpand-1 '(.. arm getHand getFinger))
 -> (clojure.core/.. (. arm getHand) getFinger)

If you want to see .. expanded all the way, use macroexpand:

 (macroexpand form)

If you macroexpand a call to .., it will recursively expand until only dot operators
remain:

 (macroexpand '(.. arm getHand getFinger))
 -> (. (. arm getHand) getFinger)

(It’s not a problem that arm, getHand, and getFinger don’t exist. You’re only
expanding them, not attempting to compile and execute them.)

Another recursive macro is and. If you call and with more than two arguments, it will
expand to include another call to and, with one less argument:

 (macroexpand '(and 1 2 3))
 -> (let* [and__3585__auto__ 1]
 (if and__3585__auto__ (clojure.core/and 2 3)
 and__3585__auto__))

This time, macroexpand does not expand all the way. macroexpand works only
against the top level of the form you give it. Since the expansion of and creates a new
and nested inside the form, macroexpand does not expand it.

when and when-not
Your unless macro could be improved slightly to execute multiple forms, avoiding this
error:

 (unless false (println "this") (println "and also this"))
 -> java.lang.IllegalArgumentException: \
 Wrong number of args passed to: macros$unless

Think about how you would write the improved unless. You’d need to capture a
variable argument list and stick a do in front of it so that every form executes. Clojure
provides exactly this behavior in its when and when-not macros:

 (when test & body)

 (when-not test & body)

when-not is the improved unless you’re looking for:

 (when-not false (println "this") (println "and also this"))
 | this
 | and also this
 -> nil

Given your practice writing unless, you should now have no trouble reading the
source for when-not:

 ; from Clojure core
 (defmacro when-not [test & body]
 (list 'if test nil (cons 'do body)))

And, of course, you can use macroexpand-1 to see how when-not works:

 (macroexpand-1 '(when-not false (print "1") (print "2")))
 -> (if false nil (do (print "1") (print "2")))

when is the opposite of when-not and executes its forms only when its test is true.
Note that when differs from if in two ways:

if allows an else clause, and when does not. This reflects English usage, because
nobody says “when … else.”

Since when does not have to use its second argument as an else clause, it’s free
to take a variable argument list and execute all the arguments inside a do.

You don’t really need an unless macro. Just use Clojure’s when-not. Always check to
see whether somebody else has written the macro you need.

Making Macros Simpler
The unless macro is a great simple example, but most macros are more complex. In
this section, we’ll build a set of increasingly complex macros, introducing Clojure
features as we go. For your reference, the following table summarizes the features
introduced.

Form Description
foo# Auto-gensym: Inside a syntax-quoted section, create a unique

name prefixed with foo.
(gensym
prefix?)

Create a unique name, with optional prefix.

(macroexpand
form)

Expand form with macroexpand-1 repeatedly until the returned
form is no longer a macro.

(macroexpand-
1 form)

Show how Clojure will expand form.

(list-frag?
~@form list-
frag?)

Splicing unquote: Use inside a syntax quote to splice an unquoted
list into a template.

‘form Syntax quote: Quote form, but allow internal unquoting so that
form acts as a template. Symbols inside form are resolved to help
prevent inadvertent symbol capture.

~form Unquote: Use inside a syntax quote to substitute an unquoted
value.

First let’s build a replica of Clojure’s .. macro. We’ll call it chain, since it chains a
series of method calls. Here are some sample expansions of chain:

Macro Call Expansion
(chain arm getHand) (. arm getHand)

(chain arm getHand getFinger) (. (. arm getHand) getFinger)

Begin by implementing the simple case where the chain calls only one method. The
macro needs only to make a simple list:

src/examples/macros/chain_1.clj

http://media.pragprog.com/titles/shcloj3/code/src/examples/macros/chain_1.clj

 ; chain reimplements Clojure's .. macro
 (defmacro chain [x form]
 (list '. x form))

chain needs to support any number of arguments, so the rest of the implementation
should define a recursion. The list manipulation becomes more complex, since you
need to build two lists and concat them together:

src/examples/macros/chain_2.clj

 (defmacro chain
 ([x form] (list '. x form))
 ([x form & more] (concat (list 'chain (list '. x form)) more)))

Test chain using macroexpand to make sure it generates the correct expansions:

 (macroexpand '(chain arm getHand))
 -> (. arm getHand)

 (macroexpand '(chain arm getHand getFinger))
 -> (. (. arm getHand) getFinger)

The chain macro works fine as written, but it’s difficult to read the expression that
handles more than one argument:

 (concat (list 'chain (list '. x form)) more)))

The definition of chain oscillates between macro code and the body to be generated.
The intermingling of the two makes the entire thing hard to read. And this is just a
baby of a form, only one line in length. As macro forms grow more complex, assembly
functions such as list and concat quickly obscure the meaning of the macro.

One solution to this kind of problem is a templating language. If macros were created
from templates, you could take a “fill-in-the-blanks” approach to creating them. The
definition of chain might look like this:

 ; hypothetical templating language
 (defmacro chain
 ([x form] (. ${x} ${form}))
 ([x form & more] (chain (. ${x} ${form}) ${more})))

In this hypothetical templating language, the ${} lets you substitute arguments into the
macro expansion.

Notice how much easier the definition is to read and how it clearly shows what the

http://media.pragprog.com/titles/shcloj3/code/src/examples/macros/chain_2.clj

expansion will look like.

Syntax Quote, Unquote, and Splicing Unquote
Clojure macros support templating without introducing a separate language. The
syntax quote character, which is a backquote (‘), works almost like normal quoting.
But inside a syntax-quoted list, the unquote character (~, a tilde) turns quoting off
again. The overall effect is templates that look like this:

src/examples/macros/chain_3.clj

 (defmacro chain [x form]
 `(. ~x ~form))

Test that this new version of chain can correctly generate a single method call:

 (macroexpand '(chain arm getHand))
 -> (. arm getHand)

Unfortunately, the syntax quote/unquote approach won’t quite work for the multiple-
argument variant of chain:

src/examples/macros/chain_4.clj

 ; Does not quite work
 (defmacro chain
 ([x form] `(. ~x ~form))
 ([x form & more] `(chain (. ~x ~form) ~more)))

When you expand this chain, the parentheses aren’t quite right:

 (macroexpand '(chain arm getHand getFinger))
 -> (. (. arm getHand) (getFinger))

The last argument to chain is a list of more arguments. When you drop more into the
macro “template,” it has parentheses because it’s a list. But you don’t want these
parentheses; you want more to be spliced into the list. This comes up often enough
that there is a reader macro for it: splicing unquote (~@). Rewrite chain using splicing
unquote to splice in more:

src/examples/macros/chain_5.clj

 (defmacro chain
 ([x form] `(. ~x ~form))
 ([x form & more] `(chain (. ~x ~form) ~@more)))

http://media.pragprog.com/titles/shcloj3/code/src/examples/macros/chain_3.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/macros/chain_4.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/macros/chain_5.clj

Now, the expansion should be spot on:

 (macroexpand '(chain arm getHand getFinger))
 -> (. (. arm getHand) getFinger)

Many macros follow the pattern of chain, aka Clojure ..

1. Begin the macro body with a syntax quote (‘) to treat the entire thing as a
template.

2. Insert individual arguments with an unquote (~).
3. Splice in more arguments with splicing unquote (~@).

The macros we’ve built so far have been simple enough to avoid creating any bindings
with let or binding. Let’s create such a macro next.

Creating Names in a Macro

Clojure has a time macro that times an expression, writing the elapsed time to the
console:

 (time (str "a" "b"))
 | "Elapsed time: 0.06 msecs"
 -> "ab"

Let’s build a variant of time called bench, designed to collect data across many runs.
Instead of writing to the console, bench will return a map that includes both the return
value of the original expression and the elapsed time.

The best way to begin writing a macro is to write its desired expansion by hand. bench
should expand like this:

 ; (bench (str "a" "b"))
 ; should expand to
 (let [start (System/nanoTime)
 result (str "a" "b")]
 {:result result :elapsed (- (System/nanoTime) start)})

 -> {:elapsed 61000, :result "ab"}

The let binds start to the start time and then executes the expression to be benched,
binding it to result. Finally, the form returns a map including the result and the
elapsed time since start.

With the expansion in hand, you can now work backward and write the macro to

generate the expansion. Using the technique from the previous section, try writing
bench using syntax quoting and unquoting:

src/examples/macros/bench_1.clj

 ; This won't work
 (defmacro bench [expr]
 `(let [start (System/nanoTime)
 result ~expr]
 {:result result :elapsed (- (System/nanoTime) start)}))

If you try to call this version of bench, Clojure will complain:

 (bench (str "a" "b"))
 -> java.lang.Exception: Can't let qualified name: examples.macros/start

Clojure is accusing you of trying to let a qualified name, which is illegal. Calling
macroexpand-1 confirms the problem:

 (macroexpand-1 '(bench (str "a" "b")))
 -> (clojure.core/let [examples.macros/start (System/nanoTime)
 examples.macros/result (str "a" "b")]
 {:elapsed (clojure.core/- (System/nanoTime) examples.macros/start)
 :result examples.macros/result})

When a syntax-quoted form encounters a symbol, it resolves the symbol to a fully
qualified name. At the moment, this seems like an irritant, because you want to create
local names, specifically start and result. But Clojure’s approach protects you from a
nasty macro bug called symbol capture.

What would happen if macro expansion did allow the unqualified symbols start and
result, and then bench was later used in a scope where those names were already
bound to something else? The macro would capture the names and bind them to
different values, with bizarre results. If bench captured its symbols, it would appear to
work fine most of the time. Adding 1 and 2 gives you 3:

 (let [a 1 b 2]
 (bench (+ a b)))

 -> {:result 3, :elapsed 39000}

…until the unlucky day that you picked a local name like start, which collided with a
name inside bench:

http://media.pragprog.com/titles/shcloj3/code/src/examples/macros/bench_1.clj

 (let [start 1 end 2]
 (bench (+ start end)))

 -> {:result 1228277342451783002, :elapsed 39000}

bench captures the symbol start and binds it to (System/nanoTime). All of a sudden,
“1 plus 2” seems to equal 1228277342451783002.

Clojure’s insistence on resolving names in macros helps protect you from symbol
capture, but you still don’t have a working bench. You need some way to introduce
local names, ideally unique ones that can’t collide with any names used by the caller.

Clojure provides a reader form for creating unique local names. Inside a syntax-quoted
form, you can append an octothorpe (#) to an unqualified name, and Clojure will
create an autogenerated symbol, or auto-gensym: a symbol based on the name plus an
underscore and a unique ID. Try it at the REPL:

 `foo#
 foo__1004

With automatically generated symbols at your disposal, it’s easy to implement bench
correctly:

 (defmacro bench [expr]
 `(let [start# (System/nanoTime)
 result# ~expr]
 {:result result# :elapsed (- (System/nanoTime) start#)}))

Test it at the REPL:

 (bench (str "a" "b"))
 -> {:elapsed 63000, :result "ab"}

Clojure makes it easy to generate unique names, but if you’re determined, you can still
force symbol capture. The sample code for the book includes an evil-bench that shows
a combination of syntax quoting, quoting, and unquoting that leads to symbol capture.
Don’t use symbol capture unless you have a thorough understanding of macros.

Taxonomy of Macros
Now that you’ve written several macros, we can restate the rules of Macro Club with
more supporting detail.

The first rule of Macro Club is, Don’t Write Macros. Macros are complex. If you can
avoid that complexity, you should.

The second rule of Macro Club is, Write Macros If That Is the Only Way to
Encapsulate a Pattern. As you’ve seen, the patterns that resist encapsulation tend to
arise around special forms, which are irregularities in a language. So the second rule
can also be called the Special Form Rule.

Special forms have special powers that you, the programmer, do not have:

Special forms provide the most basic flow control structures, such as if and recur.
All flow control macros must eventually call a special form.

Special forms provide direct access to Java. When you call Java from Clojure,
you’re going through at least one special form, such as the . (dot) or new.

Names are created and bound through special forms, whether defining a var with
def, creating a lexical binding with let, or creating a dynamic binding with
binding.

As powerful as they are, special forms are not functions. They can’t do some things
that functions can do. You cannot apply a special form, store a special form in a var, or
use a special form as a filter with the sequence library. In short, special forms are not
first-class citizens of the language.

The specialness of special forms could be a major problem and lead to repetitive,
unmaintainable patterns in your code. But macros neatly solve the problem, because
you can use macros to generate special forms. In a practical sense, all language
features are first-class features at macro expansion time.

Macros that generate special forms are often the most difficult to write but also the
most rewarding. As if by magic, such macros seem to add new features to the
language.

The exception to the Macro Club rules is caller convenience: you can write any macro

that makes life easier for your callers when compared with an equivalent function.
Because macros don’t evaluate their arguments, callers can pass raw code to a macro,
instead of wrapping the code in an anonymous function. Or, callers can pass unescaped
names, instead of quoted symbols or strings.

We have reviewed the macros in Clojure and contrib libraries, and almost all of them
follow the rules of Macro Club. Also, they fit into one or more of the categories in the
following table, which shows the taxonomy of Clojure macros.

Justification Category Examples
Special form Conditional

evaluation
when, when-not, and, or, comment

Special form Defining vars defn, defmacro, defmulti, defstruct,
declare

Special form Java interop .., doto, import-static

Caller
convenience

Postponing
evaluation

lazy-cat, lazy-seq, delay

Caller
convenience

Wrapping
evaluation

with-open, dosync, with-out-str, time,
assert

Caller
convenience

Avoiding a lambda (Same as for “Wrapping evaluation”)

Let’s examine each of the categories in turn.

Conditional Evaluation
Because macros do not immediately evaluate their arguments, they can be used to
create custom control structures. You’ve already seen this with the unless example in
Writing a Control Flow Macro.

Macros that do conditional evaluation tend to be fairly simple to read and write. They
follow a common form: evaluate some argument (the condition); then, based on that
evaluation, pick which other arguments to evaluate, if any. A good example is
Clojure’s and:

1: (defmacro and
2: ([] true)
3: ([x] x)
4: ([x & rest]
5: `(let [and# ~x]

6: (if and# (and ~@rest) and#))))

and is defined recursively. The zero- and one-argument bodies set up base cases:

For no arguments, return true.
For one argument, return that argument.

For two or more arguments, and uses the first argument as its condition, evaluating it
on line 5. Then, if the condition is true, and proceeds to evaluate the remaining
arguments by recursively anding the rest (line 6).

To short-circuit evaluation after the first non-true value is encountered, and must be a
macro. Unsurprisingly, and has a close cousin macro, or. Their signatures are the
same:

 (and & exprs)

 (or & exprs)

The difference is that and stops on the first logical false, while or stops on the first
logical true:

 (and 1 0 nil false)
 -> nil

 (or 1 0 nil false)
 -> 1

The all-time, short-circuit evaluation champion is the comment macro:

 (comment & exprs)

comment never evaluates any of its arguments and is sometimes used at the end of a
source code file to demonstrate the usage of an API.

For example, the Clojure inspector library ends with the following comment,
demonstrating the use of the inspector:

 (comment

 (load-file "src/inspector.clj")
 (refer 'inspector)
 (inspect-tree {:a 1 :b 2 :c [1 2 3 {:d 4 :e 5 :f [6 7 8]}]})
 (inspect-table [[1 2 3][4 5 6][7 8 9][10 11 12]])

)

Notice the lack of indentation. This would be nonstandard in most Clojure code but is
useful in comment, whose purpose is to draw attention to its body.

Creating Vars
Clojure vars are created by the def special form. Anything else that creates a var must
eventually call def. So, for example, defn, defmacro, and defmulti are all themselves
macros.

To demonstrate writing macros that create vars, we’ll look at two macros that are also
part of Clojure: defstruct and declare.

Clojure provides a low-level function for creating structs called create-struct. Note
that structs are effectively deprecated now in favor of records, but defstruct is still an
instructive macro example.

 (create-struct & key-symbols)

Use create-struct to create a person struct:

 (def person (create-struct :first-name :last-name))
 -> #'user/person

create-struct works, but it’s visually noisy. Given that you often want to immediately
def a new struct, you’ll typically call defstruct, which combines def and create-
struct in a single operation:

 (defstruct name & key-symbols)

defstruct is a simple macro, and it’s already part of Clojure:

 (defmacro defstruct
 [name & keys]
 `(def ~name (create-struct ~@keys)))

This macro takes advantage of several macro features: delayed evaluation of the
symbol name, splicing of keys, and rewriting the expressions at compile time rather
than a runtime invocation of def.

defstruct makes a single line easier to read, but some macros can also condense many
lines into a single form. Consider the issue of forward declarations. You’re writing a
program that needs forward references to vars a, b, c, and d. You can call def with no

arguments to define the var names without an initial binding:

 (def a)
 (def b)
 (def c)
 (def d)

But this is tedious and wastes a lot of vertical space. The declare macro takes a
variable list of names and defs each name for you:

 (declare & names)

Now you can declare all the names in a single compact form:

 (declare a b c d)
 -> #'user/d

The implementation of declare is built into Clojure:

 (defmacro declare
 [& names] `(do ~@(map #(list 'def %) names)))

Let’s analyze declare from the inside out. The anonymous function #(list ’def %) is
responsible for generating a single def. Test this form alone at the REPL:

 (#(list 'def %) 'a)
 -> (def a)

The map invokes the inner function once for each symbol passed in. Again, you can
test this form at the REPL:

 (map #(list 'def %) '[a b c d])
 -> ((def a) (def b) (def c) (def d))

The leading do makes the entire expansion into a single legal Clojure form:

 `(do ~@(map #(list 'def %) '[a b c d]))
 -> (do (def a) (def b) (def c) (def d))

Substituting ’[a b c d] in the previous form is the manual equivalent of testing the
entire macro with macroexpand-1:

 (macroexpand-1 '(declare a b c d))
 -> (do (def a) (def b) (def c) (def d))

Many of the most interesting parts of Clojure are macros that expand into special

forms involving def. We’ve explored a few here, but you can read the source of any of
them. Most of them live at src/clj/clojure/core.clj in the Clojure source distribution.

Java Interop
Clojure programs call into Java via the . (dot), new, and set! special forms. However,
idiomatic Clojure code often uses macros such as .. (threaded member access) and
doto to simplify forms that call Java.

You (or anyone else) can extend how Clojure calls Java by writing a macro. Consider
the following scenario. You’re writing code that uses several of the constants in
java.lang.Math:

 Math/PI
 -> 3.141592653589793
 (Math/pow 10 3)
 -> 1000.0

In a longer segment of code, the Math/ prefix would quickly become distracting, so it
would be nice if you could say simply PI and pow. Clojure doesn’t provide a direct
way to do this, but you could define a bunch of vars by hand:

 (def PI Math/PI)
 -> #'user/PI
 (defn pow [b e] (Math/pow b e))
 -> #'user/pow

Stuart Sierra[41] automated the boilerplate with the import-static macro:

 (examples.import-static/import-static class & members)

import-static imports static members of a Java class as names in the local namespace.
Use import-static to import the members you want from Math.

 (require '[examples.import-static :refer [import-static]])
 (import-static java.lang.Math PI pow)
 -> nil

 PI
 -> 3.141592653589793

 (pow 10 3)
 -> 1000.0

Postponing Evaluation
Most sequences in Clojure are lazy. When you’re building a lazy sequence, you often
want to combine several forms whose evaluation is postponed until the sequence is
forced. Since evaluation is not immediate, a macro is required.

You’ve already seen such a macro in Lazy and Infinite Sequences : lazy-seq. Another
example is delay:

 (delay & exprs)

When you create a delay, it holds on to its exprs and does nothing with them until it’s
forced to. Try creating a delay that simulates a long calculation by sleeping:

 (def slow-calc (delay (Thread/sleep 5000) "done!"))
 -> #'user/slow-calc

To actually execute the delay, you must force it:

 (force x)

Try forcing your slow-calc a few times:

 (force slow-calc)
 -> "done!"
 (force slow-calc)
 -> "done!"

The first time you force a delay, it executes its expressions and caches the result.
Subsequent forces simply return the cached value.

The macros that implement lazy and delayed evaluation all call Java code in
clojure.jar. In your own code, you should not call such Java APIs directly. Treat the
lazy/delayed evaluation macros as the public API, and treat the Java classes as
implementation detail that’s subject to change.

Wrapping Evaluation
Many macros wrap the evaluation of a set of forms, adding some special semantics
before and/or after the forms are evaluated. You’ve already seen several examples of
this kind of macro:

time starts a timer, evaluates forms, and then reports how long they took to
execute.

let and binding establish bindings, evaluate some forms, and then tear down the
bindings.

with-open takes an open file (or other resource), executes some forms, and then
makes sure the resource is closed in a finally block.

dosync executes forms within a transaction.

Another example of a wrapper macro is with-out-str:

 (with-out-str & exprs)

with-out-str temporarily binds *out* to a new StringWriter, evaluates its exprs, and
then returns the string written to *out*. with-out-str makes it easy to use print and
println to build strings on the fly:

 (with-out-str (print "hello, ") (print "world"))
 -> "hello, world"

The implementation of with-out-str has a simple structure that can act as a template
for writing similar macros:

1: (defmacro with-out-str
2: [& body]
3: `(let [s# (new java.io.StringWriter)]
4: (binding [*out* s#]
5: ~@body
6: (str s#))))

Wrapper macros usually take a variable number of arguments (line 2), which are the
forms to be evaluated. They then proceed in three steps:

1. Setup: Create some special context for evaluation, introducing bindings with let
(line 3) and bindings (line 4) as necessary.

2. Evaluation: Evaluate the forms (line 5). Since there is typically a variable number
of forms, insert them via a splicing unquote: ~@.

3. Teardown: Reset the execution context to normal and return a value as
appropriate (line 6).

When writing a wrapper macro, always ask yourself whether you need a finally block
to implement the teardown step correctly. For with-out-str, the answer is No, because
both let and binding take care of their own cleanup. If, however, you’re setting some

global or thread-local state via a Java API, you’ll need a finally block to reset this
state.

This talk of mutable state leads to another observation. Any code whose behavior
changes when executed inside a wrapper macro is obviously not a pure function. print
and println behave differently based on the value of *out* and so are not pure
functions. Macros that set a binding, such as with-out-str, do so to alter the behavior
of an impure function somewhere.

Not all wrappers change the behavior of the functions they wrap. You’ve already seen
time, which times a function’s execution. Another example is assert:

 (assert expr)

assert tests an expression and raises an exception if it’s not logically true:

 (assert (= 1 1))
 -> nil

 (assert (= 1 2))
 -> java.lang.Exception: Assert failed: (= 1 2)

Macros like assert and time violate the first rule of Macro Club to avoid unnecessary
lambdas.

Avoiding Lambdas
For historical reasons, anonymous functions are often called lambdas. Sometimes a
macro can be replaced by a function call, with the arguments wrapped in a lambda. For
example, the bench macro from Syntax Quote, Unquote, and Splicing Unquote does
not need to be a macro. You can write it as a function:

 (defn bench-fn [f]
 (let [start (System/nanoTime)
 result (f)]
 {:result result :elapsed (- (System/nanoTime) start)}))

However, if you want to call bench-fn, you must pass it a function that wraps the form
you want to execute. The following code shows the difference:

 ; macro
 (bench (+ 1 2))
 -> {:elapsed 44000, :result 3}

 ; function
 (bench-fn (fn [] (+ 1 2)))
 -> {:elapsed 53000, :result 3}

For things like bench, macros and anonymous functions are near substitutes. Both
prevent immediate execution of a form. However, the anonymous function approach
requires more work on the part of the caller, so it’s OK to break the first rule and write
a macro instead of a function.

Another reason to prefer a macro for bench is that bench-fn is not a perfect substitute;
it adds the overhead of an anonymous function call at runtime. Since bench’s purpose
is to time things, you should avoid this overhead.

[40]

[41]

Wrapping Up
Clojure macros let you automate patterns in your code. Because they transform source
code at macro expansion time, you can use macros to abstract away any kind of pattern
in your code. You’re not limited to working within Clojure. With macros, you can
extend Clojure into your problem domain.

Footnotes

http://en.wikipedia.org/wiki/Design_pattern_(computer_science)

https://stuartsierra.com/

Copyright © 2018, The Pragmatic Bookshelf.

http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
https://stuartsierra.com/

Chapter 9

Multimethods

Clojure multimethods provide a flexible way to associate a function with a set of
inputs. This is similar to Java polymorphism but more general. When you call a Java
method, Java selects a specific implementation to execute by examining the type of a
single object. When you call a Clojure multimethod, Clojure selects a specific
implementation to execute by examining the result of any function you choose, applied
to all the function’s arguments.

In this chapter, you’ll develop a thirst for multimethods by first living without them.
Then you’ll build an increasingly complex series of multimethod implementations—
first using multimethods to simulate polymorphism and then using multimethods to
implement various ad hoc taxonomies.

Multimethods in Clojure are used much less often than polymorphism in object-
oriented languages. But where they are used, they’re often the key feature in the code.
We’ll close the chapter by looking at how multimethods are used in several open
source Clojure projects and offer guidelines for when to use them in your own
programs.

Living Without Multimethods
The best way to appreciate multimethods is to spend a few minutes living without
them, so let’s do that. Clojure can already print anything with print/println. But
pretend for a moment that these functions don’t exist and that you need to build a
generic print mechanism. To get started, create a my-print function that can print a
string to the standard output stream *out*:

src/examples/life_without_multi.clj

 (defn my-print [ob]
 (.write *out* ob))

Next, create a my-println that calls my-print and then adds a line feed:

src/examples/life_without_multi.clj

 (defn my-println [ob]
 (my-print ob)
 (.write *out* "\n"))

The line feed makes my-println’s output easier to read when testing at the REPL. For
the rest of this section, you’ll make changes to my-print and test them by calling my-
println. Test that my-println works with strings:

 (my-println "hello")
 | hello
 -> nil

That’s nice, but my-println doesn’t work so well with nonstrings such as nil:

 (my-println nil)
 -> java.lang.NullPointerException

It’s not a big deal though. Just use cond to add special-case handling for nil:

src/examples/life_without_multi.clj

 (defn my-print [ob]
 (cond
 (nil? ob) (.write *out* "nil")
 (string? ob) (.write *out* ob)))

http://media.pragprog.com/titles/shcloj3/code/src/examples/life_without_multi.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/life_without_multi.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/life_without_multi.clj

With the conditional in place, you can print nil with no trouble:

 (my-println nil)
 | nil
 -> nil

Of course, there are still all kinds of types that my-println can’t deal with. If you try to
print a vector, neither of the cond clauses will match, and the program will print
nothing at all:

 (my-println [1 2 3])
 -> nil

By now you know the drill. Just add another cond clause for the vector case. The
implementation here is a little more complex, so you might want to separate the actual
printing into a helper function, such as my-print-vector:

src/examples/life_without_multi.clj

 (require '[clojure.string :as str])
 (defn my-print-vector [ob]
 (.write *out*"[")
 (.write *out* (str/join " " ob))
 (.write *out* "]"))

 (defn my-print [ob]
 (cond
 (vector? ob) (my-print-vector ob)
 (nil? ob) (.write *out* "nil")
 (string? ob) (.write *out* ob)))

Make sure that you can now print a vector:

 (my-println [1 2 3])
 | [1 2 3]
 -> nil

my-println now supports three types: strings, vectors, and nil. And you have a road
map for new types: just add new clauses to the cond in my-println. But it’s a crummy
road map, because it conflates two things: the decision process for selecting an
implementation and the specific implementation detail.

You can improve the situation somewhat by pulling out helper functions like my-print-
vector. But then you’ll have to make two separate changes every time you want to a

http://media.pragprog.com/titles/shcloj3/code/src/examples/life_without_multi.clj

add new feature to my-println:

Create a new type-specific helper function.
Modify my-println to add a new cond invoking the feature-specific helper.

What you want is a way to add new features to the system by adding new code in a
single place, without having to modify any existing code. Clojure offers this by way of
protocols, covered in Protocols , and multimethods.

Defining Multimethods
Multimethods capture the same pattern we explored in the previous section but support
adding new cases without changing the existing code. Multimethods also provide some
additional features that we’ll look at later on. Multimethods consist of two parts: a
dispatch function (created with defmulti) and a set of methods (created with
defmethod).

To define a multimethod, use defmulti:

 (defmulti name dispatch-fn)

name is the name of the new multimethod, and Clojure will invoke dispatch-fn
against the method arguments to select one particular method (implementation) of the
multimethod.

Consider my-print from the previous section. It takes a single argument, the thing to be
printed, and you want to select a specific implementation based on the type of that
argument. So dispatch-fn needs to be a function of one argument that returns the type
of that argument. Clojure has a built-in function matching this description, namely,
class. Use class to create a multimethod called my-print:

src/examples/multimethods.clj

 (defmulti my-print class)

At this point, you’ve provided a description of how the multimethod will select a
specific method but no actual specific methods. Unsurprisingly, attempts to call my-
print will fail:

 (my-println "foo")
 -> java.lang.IllegalArgumentException: \
 No method for dispatch value

To add a specific method implementation to my-println, use defmethod:

 (defmethod name dispatch-val & fn-tail)

name is the name of the multimethod to which an implementation belongs. Clojure
matches the result of defmulti’s dispatch function with dispatch-val to select a
method, and fn-tail contains arguments and body forms just like a normal function.

http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods.clj

Create a my-print implementation that matches on strings:

src/examples/multimethods.clj

 (defmethod my-print String [s]
 (.write *out* s))

Now, call my-println with a string argument:

 (my-println "stu")
 | stu
 -> nil

Next, create a my-print that matches on nil:

src/examples/multimethods.clj

 (defmethod my-print nil [s]
 (.write *out* "nil"))

Notice that you’ve solved the problem raised in the previous section. Instead of being
joined in a big cond, each implementation of my-println is separate. Methods of a
multimethod can live anywhere in your source, and you can add new ones any time,
without having to touch the original code.

Dispatch Is Inheritance-Aware
Multimethod dispatch knows about Java inheritance. To see this, create a my-print that
handles Number by printing a number’s toString representation:

src/examples/multimethods.clj

 (defmethod my-print Number [n]
 (.write *out* (.toString n)))

Test the Number implementation with an integer:

 (my-println 42)
 | 42
 -> nil

42 is a Long, not a Number. Multimethod dispatch is smart enough to know that a
long is a number and match anyway. Internally, dispatch uses the isa? function:

 (isa? child parent)

http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods.clj

isa? knows about Java inheritance, so it knows that an Integer is a Number:

 (isa? Long Number)
 -> true

isa? is not limited to inheritance. Its behavior can be extended dynamically at runtime,
as you will see later in Creating Ad Hoc Taxonomies .

Multimethod Defaults
It would be nice if my-print could have a fallback representation that you could use for
any type you haven’t specifically defined. You can use :default as a dispatch value to
handle any methods that don’t match anything more specific. Using :default, create a
my-println that prints the Java toString value of objects, wrapped in #<>:

src/examples/multimethods.clj

 (defmethod my-print :default [s]
 (.write *out* "#<")
 (.write *out* (.toString s))
 (.write *out* ">"))

Now test that my-println prints random things, using the default method:

 (my-println (java.sql.Date. 0))
 -> #<1969-12-31>

 (my-println (java.util.Random.))
 -> #<java.util.Random@1c398896>

In the unlikely event that :default already has some specific meaning in your domain,
you can create a multimethod using this alternate signature:

 (defmulti name dispatch-fn :default default-value)

The default-value lets you specify your own default. Maybe you’d like to call it
:everything-else:

src/examples/multimethods/default.clj

 (defmulti my-print class :default :everything-else)
 (defmethod my-print String [s]
 (.write *out* s))
 (defmethod my-print :everything-else [_]
 (.write *out* "Not implemented yet..."))

http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods/default.clj

Any dispatch value that does not otherwise match will now match against :everything-
else.

Dispatching a multimethod on the type of the first argument, as you’ve done with my-
print, is by far the most common kind of dispatch. In many object-oriented languages,
in fact, it’s the only kind of dynamic dispatch, and it goes by the name polymorphism.

Clojure’s dispatch is much more general. Let’s add a few complexities to my-print and
move beyond what’s possible with plain ol’ polymorphism.

Moving Beyond Simple Dispatch
Clojure’s print function prints various “sequencey” things as lists. If you wanted my-
print to do something similar, you could add a method that dispatched on a collection
interface high in the Java inheritance hierarchy, such as Collection:

src/examples/multimethods.clj

 (require '[clojure.string :as str])
 (defmethod my-print java.util.Collection [c]
 (.write *out* "(")
 (.write *out* (str/join " " c))
 (.write *out* ")"))

Now, try various sequences to see that they get a nice print representation:

 (my-println (take 6 (cycle [1 2 3])))
 | (1 2 3 1 2 3)
 -> nil

 (my-println [1 2 3])
 | (1 2 3)
 -> nil

Perfectionist that you are, you cannot stand that vectors print with rounded braces,
unlike their literal square-brace syntax. So add yet another my-print method, this time
to handle vectors. Vectors all implement an IPersistentVector, so this should work:

src/examples/multimethods.clj

 (defmethod my-print clojure.lang.IPersistentVector [c]
 (.write *out* "[")
 (.write *out* (str/join " " c))
 (.write *out* "]"))

But it doesn’t work. Instead, printing vectors now throws an exception:

 (my-println [1 2 3])
 -> java.lang.IllegalArgumentException: Multiple methods match
 dispatch value: class clojure.lang.LazilyPersistentVector ->
 interface clojure.lang.IPersistentVector and
 interface java.util.Collection,
 and neither is preferred

http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods.clj

The problem is that two dispatch values now match for vectors: Collection and
IPersistentVector. Many languages constrain method dispatch to make sure these
conflicts never happen, such as by forbidding multiple inheritance. Clojure takes a
different approach. You can create conflicts, and you can resolve them with prefer-
method:

 (prefer-method multi-name loved-dispatch dissed-dispatch)

When you call prefer-method for a multimethod, you tell it to prefer the loved-
dispatch value over the dissed-dispatch value whenever there’s a conflict. Since you
want the vector version of my-print to trump the collection version, tell the
multimethod what you want:

src/examples/multimethods.clj

 (prefer-method
 my-print clojure.lang.IPersistentVector java.util.Collection)

Now, you should be able to route both vectors and other sequences to the correct
method implementation:

 (my-println (take 6 (cycle [1 2 3])))
 | (1 2 3 1 2 3)
 -> nil

 (my-println [1 2 3])
 | [1 2 3]
 -> nil

Many languages create complex rules, or arbitrary limitations, to resolve ambiguities
in their systems for dispatching functions. Clojure allows a much simpler approach:
just don’t worry about it! If there’s an ambiguity, use prefer-method to resolve it.

http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods.clj

Creating Ad Hoc Taxonomies
Multimethods let you create ad hoc taxonomies, which can be helpful when you
discover type relationships that are not explicitly declared as such.

For example, consider a financial application that deals with checking and savings
accounts. Define a Clojure map for an account, using a tag to distinguish the two:

src/examples/multimethods/account.clj

 (ns examples.multimethods.account)

Now, you’re going to create two different checking accounts, tagged as ::checking and
::savings. The doubled :: causes the keywords to resolve in the current namespace. To
see the namespace resolution happen, compare entering :checking and ::checking at
the REPL:

 :checking
 -> :checking

 ::checking
 -> :user/checking

Placing keywords in a namespace helps prevent name collisions with other people’s
code. When you want to use ::savings or ::checking from another namespace, you’ll
need to fully qualify them:

 {:id 1, :tag :examples.multimethods.account/savings, :balance 100M}

Full names get tedious quickly, so you can use alias to specify a shorter alias for a long
namespace name:

 (alias short-name-symbol namespace-symbol)

Use alias to create the short name acc:

 (alias 'acc 'examples.multimethods.account)
 -> nil

Now that the acc alias is available, create two top-level test objects, a savings account
and a checking account:

 (def test-savings {:id 1, :tag ::acc/savings, ::balance 100M})

http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods/account.clj

 -> #'user/test-savings

 (def test-checking {:id 2, :tag ::acc/checking, ::balance 250M})
 -> #'user/test-checking

Note that the trailing M creates a BigDecimal literal and does not mean you have
millions of dollars.

The interest rate is 0% for checking accounts and 5% for savings accounts. Create a
multimethod interest-rate that dispatches based on :tag, like so:

src/examples/multimethods/account.clj

 (defmulti interest-rate :tag)
 (defmethod interest-rate ::acc/checking [_] 0M)
 (defmethod interest-rate ::acc/savings [_] 0.05M)

Check your test-savings and test-checking to make sure that interest-rate works as
expected.

 (interest-rate test-savings)
 -> 0.05M

 (interest-rate test-checking)
 -> 0M

Accounts have an annual service charge, with rules as follows:

Normal checking accounts incur a $25 fee.
Normal savings accounts incur a $10 fee.
Premium accounts have no fee.
Checking accounts with a balance of $5,000 or more are premium.
Savings accounts with a balance of $1,000 or more are premium.

In a realistic example, the rules would be more complex. Premium status would be
driven by average balance over time, and there would probably be other ways to
qualify. But the previous rules are complex enough to demonstrate the point.

You could implement service-charge with a bunch of conditional logic, but premium
feels like a type, although there’s no explicit premium tag on an account. Create an
account-level multimethod that returns ::premium or ::basic:

src/examples/multimethods/account.clj

http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods/account.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods/account.clj

(defmulti account-level :tag)
 (defmethod account-level ::acc/checking [acct]
 (if (>= (:balance acct) 5000) ::acc/premium ::acc/basic))
 (defmethod account-level ::acc/savings [acct]
 (if (>= (:balance acct) 1000) ::acc/premium ::acc/basic))

Test account-level to make sure that checking and savings accounts require different
balance levels to reach ::premium status:

 (account-level {:id 1, :tag ::acc/savings, :balance 2000M})
 -> :examples.multimethods.account/premium
 (account-level {:id 1, :tag ::acc/checking, :balance 2000M})
 -> :examples.multimethods.account/basic

Now you might be tempted to implement service-charge using account-level as a
dispatch function:

src/examples/multimethods/service_charge_1.clj

 ; bad approach
 (defmulti service-charge account-level)
 (defmethod service-charge ::basic [acct]
 (if (= (:tag acct) ::checking) 25 10))
 (defmethod service-charge ::premium [_] 0)

The conditional logic in service-charge for ::basic is exactly the kind of type-driven
conditional that multimethods should help us avoid. The problem here is that you’re
already dispatching by account-level, and now you need to be dispatching by :tag as
well. No problem—you can dispatch on both. Write a service-charge whose dispatch
function calls both account-level and :tag, returning the results in a vector:

src/examples/multimethods/service_charge_2.clj

 (defmulti service-charge (fn [acct] [(account-level acct) (:tag acct)]))
 (defmethod service-charge [::acc/basic ::acc/checking] [_] 25)
 (defmethod service-charge [::acc/basic ::acc/savings] [_] 10)
 (defmethod service-charge [::acc/premium ::acc/checking] [_] 0)
 (defmethod service-charge [::acc/premium ::acc/savings] [_] 0)

This version of service-charge dispatches against two different taxonomies: the :tag
intrinsic to an account and the externally defined account-level. Try a few accounts to
verify that service-charge works as expected:

 (service-charge {:tag ::acc/checking :balance 1000})

http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods/service_charge_1.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods/service_charge_2.clj

 -> 25

 (service-charge {:tag ::acc/savings :balance 1000})
 -> 0

There’s one further improvement you can make to service-charge. Since all premium
accounts have the same service charge, it seems redundant to have to define two
separate service-charge methods for ::savings and ::checking accounts. It would be
nice to have a parent type ::account so you could define a multimethod that matches
::premium for any kind of ::account. Clojure lets you define arbitrary parent-child
relationships with derive:

 (derive child parent)

Using derive, you can specify that both ::savings and ::checking are kinds of
::account:

src/examples/multimethods/service_charge_3.clj

 (derive ::acc/savings ::acc/account)
 (derive ::acc/checking ::acc/account)

When you start to use derive, isa? comes into its own. In addition to understanding
Java inheritance, isa? knows all about derived relationships:

 (isa? ::acc/savings ::acc/account)
 -> true

Now that Clojure knows that savings and checking are accounts, you can define a
service-charge using a single method to handle ::premium:

src/examples/multimethods/service_charge_3.clj

 (defmulti service-charge (fn [acct] [(account-level acct) (:tag acct)]))
 (defmethod service-charge [::acc/basic ::acc/checking] [_] 25)
 (defmethod service-charge [::acc/basic ::acc/savings] [_] 10)
 (defmethod service-charge [::acc/premium ::acc/account] [_] 0)

At first glance, you may think that derive and isa? duplicate functionality that’s
already available to Clojure via Java inheritance. This is not the case. Java inheritance
relationships are forever fixed at the moment you define a class. derived relationships
can be created when you need them and can be applied to existing objects without their
knowledge or consent. So when you discover a useful relationship between existing
objects, you can derive that relationship without touching the original objects’ source

http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods/service_charge_3.clj
http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods/service_charge_3.clj

code and without creating tiresome “wrapper” classes.

If the number of different ways you might define a multimethod has your head
spinning, don’t worry. In practice, most Clojure code uses multimethods sparingly.
Let’s take a look at some open source Clojure code to get a better idea of how
multimethods are used.

When Should I Use Multimethods?
Multimethods are extremely flexible, and with that flexibility comes choices. How
should you choose when to use multimethods, as opposed to some other technique?
We approach this question from two directions, asking the following:

Where do Clojure projects use multimethods?
Where do Clojure projects eschew multimethods?

The most striking thing is that multimethods are rare—about one per 1,000 lines of
code. So don’t worry that you’re missing something important if you build a Clojure
application with few, or no, multimethods. A Clojure program that defines no
multimethods isn’t nearly as odd as an object-oriented program with no
polymorphism.

Many multimethods dispatch on class. Dispatch-by-class is the easiest kind of dispatch
to understand and implement. We already covered it in detail with the my-print
example, so we’ll say no more about it here.

Clojure multimethods that dispatch on something other than class are fairly rare. We
can look directly in Clojure for some examples. The clojure.inspector and clojure.test
libraries use unusual dispatch functions.

The Inspector
Clojure’s inspector library uses Swing to create simple views of data. You can use it
to get a tree view of your system properties:

 (require '[clojure.inspector :refer [inspect inspect-tree]])
 (inspect-tree (System/getProperties))

inspect-tree returns (and displays) a JFrame with a tree view of anything that’s
treeish. So you could also pass a nested map to inspect-tree:

 (inspect-tree {:clojure {:creator "Rich" :runs-on-jvm true}})

Treeish things are made up of nodes that can answer two questions:

Who are my children?
Am I a leaf node?

The treeish concepts of “tree,” “node,” and “leaf” all sound like candidates for classes

or interfaces in an object-oriented design. But the inspector doesn’t work this way.
Instead, it adds a “treeish” type system in an ad hoc way to existing types, using a
dispatch function named collection-tag:

 ; from Clojure's clojure/inspector.clj
 (defn collection-tag [x]
 (cond
 (map-entry? x) :entry
 (instance? java.util.Map x) :seqable
 (instance? java.util.Set x) :seqable
 (sequential? x) :seq
 (instance? clojure.lang.Seqable x) :seqable
 :else :atom))

collection-tag returns one of the keywords :entry, :map, :seqable, :seq, or :atom.
These act as the type system for the treeish world. The collection-tag function is then
used to dispatch three different multimethods that select specific implementations
based on the treeish type system.

 (defmulti is-leaf collection-tag)

 (defmulti get-child
 (fn [parent index] (collection-tag parent)))

 (defmulti get-child-count collection-tag)
 ; method implementations elided for brevity

The treeish type system is added around the existing Java type system. Existing objects
don’t have to do anything to become treeish; the inspector library does it for them.
Treeish demonstrates a powerful style of reuse. You can discover new type
relationships in existing code and take advantage of these relationships simply, without
having to modify the original code.

clojure.test
The clojure.test library in Clojure lets you write several different kinds of assertions
using the is macro. You can assert that arbitrary functions are true. For example, 10 is
not a string:

 (require '[clojure.test :refer [is]])
 (is (string? 10))

 FAIL in () (NO_SOURCE_FILE:2)
 expected: (string? 10)

 actual: (not (string? 10))
 -> false

Although you can use an arbitrary function, is knows about a few specific functions
and provides more detailed error messages. For example, you can check that a string is
not an instance? of Collection:

 (is (instance? java.util.Collection "foo"))

 FAIL in () (NO_SOURCE_FILE:3)
 expected: (instance? java.util.Collection "foo")
 actual: java.lang.String
 -> false

is also knows about =. Verify that power does not equal wisdom.

 (is (= "power" "wisdom"))

 FAIL in () (NO_SOURCE_FILE:4)
 expected: (= "power" "wisdom")
 actual: (not (= "power" "wisdom"))
 -> false

Internally, is uses a multimethod named assert-expr, which dispatches not on the type
but on the actual identity of its first argument:

 (defmulti assert-expr (fn [form message] (first form)))

Since the first argument is a symbol representing what function to check, this amounts
to yet another ad hoc type system. This time, there are three types: =, instance?, and
everything else.

The various assert-expr methods add specific error messages associated with different
functions you might call from is. Because multimethods are open ended, you can add
your own assert-expr methods with improved error messages for other functions you
frequently pass to is.

Counterexamples
As you saw in the previous section, you can often use multimethods to hoist branches
that are based on type out of the main flow of your functions. To find counterexamples
where multimethods should not be used, we looked through Clojure’s core to find type
branches that had not been hoisted to multimethods.

A simple example is Clojure’s class, which is a null-safe wrapper for the underlying
Java getClass. Minus comments and metadata, class is as follows:

 (defn class [x]
 (if (nil? x) x (.getClass x)))

You could write a version of class as a multimethod by dispatching on identity:

src/examples/multimethods.clj

 (defmulti my-class identity)
 (defmethod my-class nil [_] nil)
 (defmethod my-class :default [x] (.getClass x))

Any nil-check could be rewritten this way. But we find the original class function
easier to read than the multimethod version. This is a nice “exception that proves the
rule.” Even though class branches on type, the branching version is easier to read.

Use the following general rules when deciding whether to create a function or a
multimethod:

If a function branches based on a type, or multiple types, consider a multimethod.

Types are whatever you discover them to be. They do not have to be explicit Java
classes or data tags.

You should be able to interpret the dispatch value of a defmethod without having
to refer to the defmulti.

Don’t use multimethods merely to handle optional arguments or recursion.

When in doubt, try writing the function in both styles and pick the one that seems more
readable.

http://media.pragprog.com/titles/shcloj3/code/src/examples/multimethods.clj

Wrapping Up
Multimethods support arbitrary dispatch. Usually multimethods work based on type
relationships. Sometimes these types are formal, as in Java classes. Other times they
are informal and ad hoc and emerge from the properties of objects in the system.

Copyright © 2018, The Pragmatic Bookshelf.

Chapter 10

Java Interop

Clojure’s Java support is both powerful and lean. It’s powerful, in that it brings the
expressiveness of Lisp syntax, plus some syntactic sugar tailored to Java. It’s lean, in
that it compiles to bytecode without a translation layer and can thus achieve Java-level
performance in nearly every case.

Clojure embraces Java and its libraries. Idiomatic Clojure code calls Java libraries
directly and doesn’t try to wrap everything under the sun to look like Lisp. This
surprises many new Clojure developers but is very pragmatic. Where Java isn’t
broken, Clojure doesn’t fix it. In this chapter, you’ll see how Clojure’s access to Java
is convenient, elegant, and fast. In addition, you’ll see how to flip the script and call
Clojure from Java.

Clojure’s exception handling is easy to use. Better yet, explicit exception handling is
rarely necessary. Clojure’s exception primitives are the same as Java’s. However,
Clojure does not require you to deal with checked exceptions and makes it easy to
clean up resources using the with-open idiom.

Clojure is fast, unlike many other dynamic languages on the JVM. You can use custom
support—for type hints, primitives, and arrays—to cause Clojure’s compiler to
generate the same code that a Java compiler would generate.

Clojure is designed to let you get things done and have fun while doing it. However,
an important part of getting things done is being able to use your platform to its full
potential. Let’s start by seeing how to extend Java interfaces and classes in Clojure.

Creating Java Objects in Clojure
When calling Java libraries or the Java standard library, you’ll often need to pass in
Java objects that either implement an interface or extend a particular class. Clojure
provides solutions for this problem in several ways—direct use of Java types and
interfaces, anonymous interface implementation with reify, and class extension with
proxy.

Direct Use of Java Types
Clojure’s implementation reuses Java’s own concrete types like String, Character,
Boolean, the numeric classes, Date, and more. Because these Clojure objects are
actually Java objects, they can be passed directly to Java APIs without wrapping or
modification.

Additionally, many Clojure objects implement key Java interfaces where applicable,
so they play directly with existing APIs without additional effort. For example, Clojure
functions implement the interfaces Runnable and Callable making them useful in
many concurrency and task-oriented APIs. For example, a Thread is started with a
Runnable so any Clojure function can be used:

 (defn say-hi []
 (println "Hello from thread" (.getName (Thread/currentThread))))

 (dotimes [_ 3]
 (.start (Thread. say-hi)))

Each of the last three lines will start a new thread, running the say-hi function, so you
should see (in possibly a different order):

 Hello from thread Thread-1
 Hello from thread Thread-2
 Hello from thread Thread-3

Additionally, the Clojure data structures implement key interfaces from the Java
Collections API, such as Collection, List, Map, and Set. This means that any Java
interface that takes a collection can be directly passed the collection created in Clojure
without wrapping or copying the data.

For example, consider the Java library class java.util.Collections, which has helpful
utility methods for Java collections. One provided method is binarySearch, which
takes a sorted list and uses a binary search algorithm to determine whether the list

contains an element. If the list also implements the RandomAccess interface (which
Clojure vectors do), this can be accomplished in O(log n) element comparisons.

Since the Clojure collections implement the proper interfaces, they can be passed
directly to this Java method:

 (java.util.Collections/binarySearch [1 13 42 1000] 42)
 -> 2

The binarySearch method returns the index in the collection where the element can be
found.

Between Clojure’s direct use of Java primitives and extensive use of Java interfaces, a
lot of Java interop will simply do what you expect when you invoke a method, both in
the code as well as in the underlying bytecode. There’s no magic here, just Clojure
adhering to good Java implementation principles.

However, you’ll inevitably encounter cases where you need to invoke a method that
takes an instance conforming to a Java interface where you need to provide that
instance. In the next section, we’ll see some options for how to do this.

Implementing Java Interfaces
When invoking a Java method takes an instance implementing a Java interface, one of
the key questions is whether you need to generate that instance just for the purposes of
the call or you need to make and reuse that instance in many places.

In the first case (common when creating callbacks or using event-based APIs), it’s
easiest to just create an anonymous instance at the point of use with reify.

For example, the java.io.File class contains a method list(FilenameFilter filter) to
obtain a list of files in a directory that satisfy the filter. The FilenameFilter class has
just one method, accept(File dir, String name).

Consider building a function list-files that takes a directory and a suffix and returns a
sequence of all files with that suffix in the directory:

 (import [java.io File FilenameFilter])

 (defn suffix-filter [suffix]
 (reify FilenameFilter
 (accept [this dir name]
 (.endsWith name suffix))))

 (defn list-files [dir suffix]
 (seq (.list (File. dir) (suffix-filter suffix))))

 (list-files "." ".clj")
 -> ("project.clj")

When we invoke the list method, we need to pass a suffix-accepting instance of
FilenameFilter. Because we have a short-term need for that instance, it’s best to just
use reify to create an anonymous instance implementing that interface.

The suffix-filter helper function takes care of creating the instance. The reify function
takes an interface, which is followed by implementations of each method in that
interface. The first argument to each method is always the anonymous instance itself,
which is commonly called this (although there’s nothing special about this name). Any
number of interfaces can be implemented in a single call to reify. Any interface
methods that are not specified will be added automatically and will throw an
UnsupportedOperationException.

In other cases, you’ll want to create an object with data fields and a type that
implements a Java interface. Both defrecord and deftype can be used to implement
interfaces inline.

For example, consider creating a Counter instance with a field n for how high to count.
You could create this with reify, but you’d be unable to get or modify the data field
inside the instance, and you’d have no concrete type for the instances.

Instead we could use defrecord to implement Runnable directly:

 (defrecord Counter [n]
 Runnable
 (run [this] (println (range n))))
 -> user.Counter

 (def c (->Counter 5))
 -> #'user/c

 (.start (Thread. c))
 -> (0 1 2 3 4)

The advantage here is that c is not just an opaque anonymous object. It has a concrete
type (user.Counter), which can be used for polymorphism and a field n that can be
retrieved and/or updated.

 (:n c)
 -> 5

 (def c2 (assoc c :n 8))
 -> #'user/c2

 (.start (Thread. c2))
 -> (0 1 2 3 4 5 6 7)

To create stateful objects, we extend this further by using fields that hold reference
types like atoms.

So far we’ve only looked at implementing interfaces. Next we’ll consider how to deal
with the need to extend an actual class.

Extending Classes with Proxies
In addition to interfaces, many Java APIs provide base classes that can be used to ease
the implementation of custom instances of an interface. In particular, this is common
in places like Swing or XML parsers. Clojure can easily generate one-off proxies or
classes on disk when needed.

A good example is parsing XML with a Simple API for XML (SAX) parser. To get
ready for this example, go ahead and import the following classes. We’ll need them all
before we’re done:

 (import '[org.xml.sax InputSource]
 '[org.xml.sax.helpers DefaultHandler]
 '[java.io StringReader]
 '[javax.xml.parsers SAXParserFactory])

To use a SAX parser, you need to implement a callback mechanism. The easiest way is
often to extend the DefaultHandler class. In Clojure, you can extend a class with the
proxy function:

 (proxy class-and-interfaces super-cons-args & fns)

As a simple example, use proxy to create a DefaultHandler that prints the details of all
calls to startElement:

 (def print-element-handler
 (proxy [DefaultHandler] []
 (startElement [uri local qname atts]
 (println (format "Saw element: %s" qname)))))

proxy generates an instance of a proxy class. The first argument to proxy is
[DefaultHandler], a vector of the superclass and superinterfaces. The second
argument, [], is a vector of arguments to the base class constructor. In this case, no
arguments are needed.

After the proxy setup, comes the implementation code for zero or more proxy
methods. The proxy shown earlier has one method. Its name is startElement, and it
takes four arguments and prints the name of the qname argument.

Now you need a parser to pass the handler to. This requires plowing through a pile of
Java factory methods and constructors. For a simple exploration at the REPL, you can
create a function that parses XML in a string:

 (defn demo-sax-parse [source handler]
 (.. SAXParserFactory newInstance newSAXParser
 (parse (InputSource. (StringReader. source)) handler)))

Now the parse is easy:

 (demo-sax-parse "<foo>
 <bar>Body of bar</bar>
 </foo>" print-element-handler)
 | Saw element: foo
 | Saw element: bar

The previous example demonstrates the mechanics of creating a Clojure proxy to deal
with Java’s XML interfaces. You can take a similar approach to implementing your
own custom Java interfaces. But if all you’re doing is XML processing, the
clojure.data.xml library already has terrific XML support and can work with any
SAX-compatible Java parser.

For one-off tasks, such as XML and thread callbacks, Clojure’s proxies are quick and
easy to use. If you need a longer-lived class, you can generate an entirely new class
from Clojure using gen-class, which is an advanced topic that won’t be discussed here.

Now that we’ve seen how to invoke Java APIs from Clojure, let’s turn things around
and consider how to invoke Clojure from Java.

Calling Clojure From Java
While using Java APIs from Clojure is common due to Clojure’s embrace of the host
platform, there are times when you’ll need to invoke Clojure directly from Java. For
these cases, Clojure provides a Java API that can be used to directly access Clojure
namespaces, vars, and functions.

The main entry point for the Clojure Java API is the clojure.java.api.Clojure class,
which provides a few static methods for reading data, finding vars, and invoking
unctions. With this handful of tools, you can invoke almost any aspect of Clojure.

For example, in a Java program, you can find the + function by using the var method
of the Clojure class, which takes the namespace and name of a var and returns its value
(in this case a function). All Clojure function instances implement the clojure.lang.IFn
interface, which can be invoked with arguments:

 IFn plus = Clojure.var("clojure.core", "+");
 System.out.println(plus.invoke(1, 2, 3));

Note that the Java interfaces for Clojure functions generally take Object and return
Object.

The Clojure class also provides a read method that can be used to read literal data into
Clojure data structures:

 Object vector = Clojure.read("[1 2 3]");

By default, the Clojure Java API requires clojure.core, and thus all core functions are
available without needing to load them. When you need to load another namespace,
you can do so using require through the var interface to load namespaces just like you
would at the REPL:

 IFn require = Clojure.var("clojure.core", "require");
 require.invoke(Clojure.read("clojure.set"));

That covers the basics of using the Clojure Java API. As you can see, the tools
provided cover just the basics of reading, function lookup, and invocation, but that’s
enough to handle the majority of Clojure usage. Next we’ll look at how to handle
catching and throwing exceptions in our Clojure code.

Exception Handling
In Java code, exception handling crops up for three reasons:

Wrapping checked exceptions (see Checked Exceptions if you’re unfamiliar with
checked exceptions)

Using a finally block to clean up nonmemory resources, such as file and network
handles

Responding to the problem: ignoring the exception, retrying the operation,
converting the exception to a nonexceptional result, and so on

Checked Exceptions
Java’s checked exceptions must be explicitly caught or rethrown from every method where
they can occur in Java. This seemed like a good idea at first: checked exceptions could use
the type system to rigorously document error handling, with compiler enforcement. Most
Java programmers now consider checked exceptions a failed experiment, because their
costs in code bloat and maintainability outweigh their advantages. For more on the history
of checked exceptions, see Rod Waldhoff’s article[42] and the accompanying links.

In Clojure, things are similar but simpler. The try and throw special forms give you all
the capabilities of Java’s try, catch, finally, and throw. But you shouldn’t have to use
them very often, because Clojure doesn’t require you to deal with checked exceptions,
and there are helpful macros like with-open to encapsulate resource cleanup.

Let’s see what this looks like in practice.

Keeping Exception Handling Simple
Java programs often wrap checked exceptions at abstraction boundaries. A good
example is Apache Ant, which tends to wrap low-level exceptions (such as I/O
exceptions) with an Ant-level build exception:

 try {
 newManifest = new Manifest(r);
 } catch (IOException e) {
 throw new BuildException(...);

 }

In Clojure, you’re not forced to deal with checked exceptions. You don’t have to catch
them or declare that you throw them. So the previous code would translate to the
following:

 (Manifest. r)

The absence of exception wrappers makes idiomatic Clojure code easier to read, write,
and maintain than idiomatic Java. That said, nothing prevents you from explicitly
catching, wrapping, and rethrowing exceptions in Clojure. It simply is not required.
You should catch exceptions when you plan to respond to them in a meaningful way,
and in the next exception, we’ll see how Clojure handles this in its data-centric way.

Rethrowing with ex-info
In Java it’s common to create many custom exception subclasses corresponding to all
manner of contingencies. Often these are built in deeply nested exception hierarchies.
In practice, the majority of these exception classes add little value beyond their
specific class name, which can be caught and handled.

In Clojure, we instead have a single custom exception class provided with the
language (IExceptionInfo), which carries a map of data where you can place any
information that’s necessary or useful to handle the error.

For example, a common use for custom exceptions is inside the code that serves a web
request. Various error conditions might result in different HTTP status codes. Rather
than have dozens of exceptions, we can simply throw a custom exception with a map
of data, including the status code that should be returned:

 (defn load-resource
 [path]
 (try
 (if (forbidden? path)
 (throw (ex-info "Forbidden resource"
 {:status 403, :resource path}))
 (slurp path))
 (catch FileNotFoundException e
 (throw (ex-info "Missing resource"
 {:status 404, :resource path})))
 (catch IOException e
 (throw (ex-info "Server error"
 {:status 500, :resource path})))))

The load-resource function first checks to see whether the resource is forbidden. If so,
we throw a 403. Otherwise, we try to read and return the resource. We also handle two
different types of errors—the case where something is missing and an unknown IO
failure. In all of these cases, we use the ex-info function to create a custom exception
instance with a message and the map of data.

Higher up the call stack, some other code can catch this exception (with type
IExceptionInfo) and retrieve the map of data using ex-data. This handler or
middleware could then construct the proper HTTP response message to return.

When using external resources, it’s important to properly close and dispose of those
resources. Often in Java this can become a tangle of exception handling code. In the
next section, we’ll look at some options Clojure provides for easier cleanup.

Cleaning Up Resources
Garbage collection will clean up resources in memory. If you use resources that live
outside of garbage-collected memory, such as file handles, you need to make sure that
you clean them up, even in the event of an exception. In Java, this is normally handled
in a finally block.

If the resource you need to free follows the convention of having a close method, you
can use Clojure’s with-open macro:

 (with-open [name init-form] & body)

Internally, with-open creates a try block, sets name to the result of init-form, and then
runs the forms in body. Most important, with-open always closes the object bound to
name in a finally block. A good example of with-open is the spit function in
clojure.string:

 (clojure.core/spit file content)

spit simply writes a string to file. Try it:

 (spit "hello.out" "hello, world")
 -> nil

You should now find a file at hello.out with the contents hello, world.

The implementation of spit is simple:

 ; from clojure.core

(defn spit
 "Opposite of slurp. Opens f with writer, writes content, then
 closes f. Options passed to clojure.java.io/writer."
 {:added "1.2"}
 [f content & options]
 (with-open [^java.io.Writer w (apply jio/writer f options)]
 (.write w (str content))))

spit creates a PrintWriter on f, which can be just about anything that is writable: a file,
a URL, a URI, or any of Java’s various writers or output streams. It then prints
content to the writer. Finally, with-open guarantees that the writer is closed at the
end of spit.

If you need to do something other than close in a finally block, the Clojure try form
looks like this:

 (try expr* catch-clause* finally-clause?)
 ; catch-clause -> (catch classname name expr*)
 ; finally-clause -> (finally expr*)

You can use it as follows:

 (try
 (throw (Exception. "something failed"))
 (finally
 (println "we get to clean up")))
 | we get to clean up
 -> java.lang.Exception: something failed

The previous fragment also demonstrates Clojure’s throw form, which simply throws
whatever exception is passed to it.

Responding to an Exception
The most interesting case is when an exception handler attempts to respond to the
problem in a catch block. As a simple example, write a function to test whether a
particular class is available at runtime:

src/examples/interop.clj

 ; not caller-friendly
 (defn class-available? [class-name]
 (Class/forName class-name))

This approach is not very caller-friendly. The caller just wants a yes/no answer but

http://media.pragprog.com/titles/shcloj3/code/src/examples/interop.clj

instead gets an exception:

 (class-available? "borg.util.Assimilate")
 -> java.lang.ClassNotFoundException: borg.util.Assimilate

A friendlier approach uses a catch block to return false:

src/examples/interop.clj

 (defn class-available? [class-name]
 (try
 (Class/forName class-name) true
 (catch ClassNotFoundException _ false)))

The caller experience is much better now:

 (class-available? "borg.util.Assimilate")
 -> false

 (class-available? "java.lang.String")
 -> true

Clojure gives you everything you need to throw and catch exceptions and to cleanly
release resources. At the same time, Clojure keeps exceptions in their place. They’re
important but not so important that your mainline code is dominated by the
exceptional.

http://media.pragprog.com/titles/shcloj3/code/src/examples/interop.clj

Optimizing for Performance
In Clojure, it’s idiomatic to call Java using the techniques described in Calling Java.
The resulting code will be fast enough for 90 percent of scenarios. When you need to,
though, you can make localized changes to boost performance. These changes will not
change how outside callers invoke your code, so you’re free to make your code work
and then make it fast.

One of the most common ways to make Java interop faster is by adding type hints to
remove reflective calls. We’ll look at that first, and then we’ll consider how to use
Java primitives and arrays as a way to optimize memory use and numeric calculation
performance.

Adding Type Hints
Clojure supports adding type hints to function parameters, let bindings, variable
names, and expressions. These type hints serve two purposes:

Optimizing critical performance paths
Documenting the required type

For example, consider the following function, which returns information about a Java
class:

 (defn describe-class [c]
 {:name (.getName c)
 :final (java.lang.reflect.Modifier/isFinal (.getModifiers c))})

You can ask Clojure how much type information it can infer, by setting the special
variable *warn-on-reflection* to true:

 (set! *warn-on-reflection* true)
 -> true

The exclamation point on the end of set! is an idiomatic indication that set! changes
mutable state. set! is described in detail in Working with Java Callback APIs . With
warn-on-reflection set to true, compiling describe-class will produce the following
warnings:

 Reflection warning, line: 87
 - reference to field getName can't be resolved.

Reflection warning, line: 88
 - reference to field getModifiers can't be resolved.

These warnings indicate that Clojure has no way of knowing the type of c. You can
provide a type hint to fix this, using the metadata syntax ^Class:

 (defn describe-class [^Class c]
 {:name (.getName c)
 :final (java.lang.reflect.Modifier/isFinal (.getModifiers c))})

With the type hint in place, the reflection warnings will disappear. The compiled
Clojure code will be exactly the same as compiled Java code. Further, attempts to call
describe-class with something other than a Class will fail with a ClassCastException:

 (describe-class StringBuffer)
 -> {:name "java.lang.StringBuffer", :final true}

 (describe-class "foo")
 | IllegalArgumentException No matching field found: getName
 | for class java.lang.String

When you provide a type hint, Clojure will insert an appropriate class cast to avoid
making slow, reflective calls to Java methods. But if your function doesn’t actually
call any Java methods on a hinted object, then Clojure will not insert a cast. Consider
this wants-a-string function:

 (defn wants-a-string [^String s] (println s))
 -> #'user/wants-a-string

You might expect that wants-a-string would complain about nonstring arguments. In
fact, it’ll be perfectly happy:

 (wants-a-string "foo")
 | foo

 (wants-a-string 0)
 | 0

Clojure can tell that wants-a-string never actually uses its argument as a string
(println will happily try to print any kind of argument). Since no string methods need
to be called, Clojure doesn’t attempt to cast s to a string.

When you need speed, type hints will let Clojure code compile down to the same code
Java will produce. But you won’t need type hints that often. Make your code work

first, and then worry about making it fast.

Integer Math
Clojure provides three different sets of operations for integer types:

The default operators
The promoting operators
The unchecked operators

The following table gives a sampling of these operator types.

Default Promoting Unchecked
+ +’ unchecked-add

- -’ unchecked-subtract

* *’ unchecked-multiply

inc inc’ unchecked-inc

dec dec’ unchecked-dec

The unchecked operators correspond exactly with primitive math in Java. They are fast
but dangerous, in that they can overflow silently and give incorrect answers. In
Clojure, the unchecked operators should be used only in the rare situation that
overflow is the desired behavior (like hashing) or when performance is paramount, and
you’re certain overflow is impossible or irrelevant.

 (unchecked-add 9223372036854775807 1)
 -> -9223372036854775808

The default operators use Java primitives where possible for performance but always
make overflow checks and throw an exception.

 (+ 9223372036854775807 1)
 -> ArithmeticException integer overflow

The promoting operators automatically promote from primitives to big numbers on
overflow. This makes it possible to handle an arbitrary range but at significant
performance cost. Because primitives and big numbers share no common base type,
math with the promoting operators precludes the use of primitives as return types.

 (+' 9223372036854775807 1)
 -> 9223372036854775808N

Clojure relies on Java’s BigDecimal class for arbitrary-precision decimal numbers. See
the online documentation[43] for details. BigDecimals provide arbitrary precision but at
a price: BigDecimal math is significantly slower than Java’s floating-point primitives.

Clojure has its own BigInt class to handle BigInteger conversions. Clojure’s BigInt
has some performance improvements over using Java’s BigInteger directly. It also
wraps some of the rough edges of BigInteger. In particular, it properly implements
hashCode. This makes equality take precedence over representation, which you’ll see
in almost every abstraction in the language.

Under the hood, Clojure uses Java’s BigInteger. The performance difference comes in
how BigInt treats its values. A BigInt consists of a Long part and a BigInteger part.
When the value passed into a BigInt is small enough to be treated as a Long, it is.
When numerical operations are performed on BigInts, if their result is small enough to
be treated as a Long, it is. This gives the user the ability to add the overflow hint (N)
without paying the BigInteger cost until it’s absolutely necessary.

Using Primitives for Performance
In the previous sections, function parameters carry no type information. Clojure simply
does the right thing. Depending on your perspective, this is either a strength or a
weakness. It’s a strength, because your code is clean and simple. But it’s also a
weakness, because a reader of the code can’t be certain of datatypes, and because
doing the right thing carries some performance overhead. Consider a function that
calculates the sum of the numbers from 1 to n:

 ; performance demo only, don't write code like this
 (defn sum-to [n]
 (loop [i 1 sum 0]
 (if (<= i n)
 (recur (inc i) (+ i sum))
 sum)))

You can verify that this function works with a small input value:

 (sum-to 10)
 => 55

Let’s see how sum-to performs. To time an operation, you can use the time function.
When benchmarking, you’ll tend to want to take several measurements so that you can
eliminate startup overhead plus any outliers; therefore, you can call time from inside a
dotimes macro:

 (dotimes bindings & body)

dotimes will execute its body repeatedly, with the name bound to integers from zero
to n-1. Using dotimes, you can collect five timings of sum-to as follows:

 (dotimes [_ 5] (time (sum-to 100000)))
 | "Elapsed time: 0.397831 msecs"
 | "Elapsed time: 0.420645 msecs"
 | "Elapsed time: 0.363732 msecs"
 | "Elapsed time: 0.365856 msecs"
 -> "Elapsed time: 0.368997 msecs"

Benchmark Timings
Don’t worry if you see much different timings for this on your own machine, in particular,
in the first few timings. The JVM has extensive abilities to compile and recompile code
based on repeated use. Triggering this behavior often takes tens of thousands of
invocations, which makes benchmarking these operations tricky. Try running each
example a few times to make sure the times you see are representative.

You might also see an occasional spike where one timing is much higher than the ones
before and after it. This is usually due to the JVM doing extra work, either in
recompilation or more commonly, garbage collection.

To speed things up, you can hint the argument and return type as long. Clojure’s type
inference will flow this hint to all the internal operations and function calls inside the
function.

 (defn integer-sum-to ^long [^long n]
 (loop [i 1 sum 0]
 (if (<= i n)
 (recur (inc i) (+ i sum))
 sum)))

The integer-sum-to is indeed faster:

 (dotimes [_ 5] (time (integer-sum-to 100000)))
 | "Elapsed time: 0.152525 msecs"
 | "Elapsed time: 0.112546 msecs"
 | "Elapsed time: 0.112313 msecs"
 | "Elapsed time: 0.112196 msecs"
 -> "Elapsed time: 0.112155 msecs"

Clojure’s primitive math is still correct, in that it will check for overflow and throw an
exception. Is that as fast as things can get? Java programmers have access to super-fast
busted math: arithmetic operations that have the maximum possible performance but
can silently overflow and corrupt data.

Clojure provides access to Java’s arithmetic semantics through the unchecked family
of functions. Maybe you can get an even faster function by using the unchecked
version of +, unchecked-add:

 (defn unchecked-sum-to ^long [^long n]
 (loop [i 1 sum 0]
 (if (<= i n)
 (recur (inc i) (unchecked-add i sum))
 sum)))

The unchecked-sum-to is not significantly faster:

 (dotimes [_ 5] (time (unchecked-sum-to 100000)))
 | "Elapsed time: 0.112321 msecs"
 | "Elapsed time: 0.075186 msecs"
 | "Elapsed time: 0.075046 msecs"
 | "Elapsed time: 0.075116 msecs"
 -> "Elapsed time: 0.093338 msecs"

Orders of magnitude are important! Primitive hinting can make certain operations
significantly faster. However, switching to Java’s unchecked semantics is generally a
losing proposition. You get a trivial performance gain on average, with the possibility
of data corruption tomorrow.

Clojure provides these operations for the relatively rare cases where they’re needed
(like hash computations) and for cases where you need to interoperate with other
libraries that expect this behavior. Additionally, there are some performance-sensitive
cases where you’re willing to give up safety for maximum performance.

Prefer accuracy first and then optimize for speed only where necessary. integer-sum-
to will throw an exception on overflow. This is bad, but the problem is easily detected:

 (integer-sum-to 10000000000)
 -> java.lang.ArithmeticException: integer overflow

unchecked-sum-to will fail silently on overflow. In a program setting, it can quietly
but catastrophically corrupt data:

 (unchecked-sum-to 10000000000)
 -> -5340232216128654848 ; WRONG!!

Given the competing concerns of correctness and performance, you should normally
prefer simple, undecorated code such as the original sum-to. If profiling identifies a
bottleneck, you can force Clojure to use a primitive type in just the places that need it.

The sum-to example is deliberately simple to demonstrate the various options for
integer math in Clojure. In a real Clojure program, it would be more expressive to
implement sum-to using reduce. Summing a sequence is the same as summing the
first two items, adding that result to the next item, and so on. That is exactly the loop
that (reduce + ...) provides. With reduce, you can rewrite sum-to as a one-liner:

 (defn better-sum-to [n]
 (reduce + (range 1 (inc n))))

The example also demonstrates an even more general point: pick the right algorithm to
begin with. The sum of numbers from 1 to n can be calculated directly as follows:

 (defn best-sum-to [n]
 (/ (* n (inc n)) 2))

Even without performance hints, this is faster than implementations based on repeated
addition:

 (dotimes [_ 5] (time (best-sum-to 100000)))
 | "Elapsed time: 0.043821 msecs"
 | "Elapsed time: 0.004646 msecs"
 | "Elapsed time: 0.003991 msecs"
 | "Elapsed time: 0.004111 msecs"
 -> "Elapsed time: 0.003898 msecs"

Performance is a tricky subject. Don’t write ugly code in search of speed. Start by
choosing appropriate algorithms and getting your code to work correctly. If you have
performance issues, profile to identify the problems. Then, introduce only as much
complexity as you need to solve those problems.

Using Java Arrays
Clojure’s collections supplant the Java collections for most purposes. Clojure’s
collections are concurrency safe, have good performance characteristics, and
implement the appropriate Java collection interfaces. So you should generally prefer
Clojure’s own collections when you’re working in Clojure and even pass them back
into Java when convenient.

If you do choose to use the Java collections, nothing in Clojure will stop you. From
Clojure’s perspective, the Java collections are classes like any other, and all the
various Java interop forms will work. But the Java collections are designed for lock-
based concurrency. They will not provide the concurrency guarantees that Clojure
collections do and won’t work well with Clojure’s software transactional memory.

One place where you’ll need to deal with Java collections is the special case of Java
arrays. In Java, arrays have their own syntax and their own bytecode instructions. Java
arrays don’t implement any Java interface. Clojure collections cannot masquerade as
arrays. (Java collections can’t either!) The Java platform makes arrays a special case in
every way, so Clojure does, too.

Clojure provides make-array to create Java arrays:

 (make-array class length)
 (make-array class dim & more-dims)

make-array takes a class and a variable number of array dimensions. For a one-
dimensional array of strings, you might say this:

 (make-array String 5)
 -> #object["[Ljava.lang.String;" 0x6a129a7d "

[Ljava.lang.String;@6a129a7d"]

The odd output is courtesy of Java’s implementation of toString() for arrays:
[Ljava.lang.String; is the JVM specification’s encoding for “one-dimensional array of
strings.” That’s not very useful at the REPL, so you can use Clojure’s seq to wrap any
Java array as a Clojure sequence so that the REPL can print the individual array
entries:

 (seq (make-array String 5))
 -> (nil nil nil nil nil)

Clojure also includes a family of functions with names such as int-array for creating
arrays of Java primitives. You can issue the following command at the REPL to review
the documentation for these and other array functions:

 (find-doc "-array")

Clojure provides a set of low-level operations on Java arrays, including aset, aget, and
alength:

 (aset java-array index value)

 (aset java-array index-dim1 index-dim2 ... value)
 (aget java-array index)
 (aget java-array index-dim1 index-dim2 ...)
 (alength java-array)

Use make-array to create an array and then experiment with using aset, aget, and
alength to work with the array:

 (defn painstakingly-create-array []
 (let [arr (make-array String 5)]
 (aset arr 0 "Painstaking")
 (aset arr 1 "to")
 (aset arr2 "fill")
 (aset arr 3" in")
 (aset arr 4 "arrays")
 arr))

 (aget (paintakingly-create-array) 0)
 -> "Painstaking"

 (alength (painstakingly-create-array))
 -> 5

Most of the time, you’ll find it simpler to use higher-level functions such as to-array,
which creates an array directly from any collection:

 (to-array sequence)

to-array always creates an Object array:

 (to-array ["Easier" "array" "creation"])
 -> (to-array ["Easier" "array" "creation"])

to-array is also useful for calling Java methods that take a variable argument list, such
as String/format:

 ; example. prefer clojure.core/format (String/format "Training Week: %s
Mileage: %d"

 (String/format "Training Week: %s Mileage: %d"
 (to-array [2 26]))
 -> "Training Week: 2 Mileage: 26"

to-array’s cousin into-array can create an array with a more specific type than Object.

 (into-array type? seq)

You can pass an explicit type as an optional first argument to into-array:

 (into-array String ["Easier", "array", "creation"])
 -> #object["[Ljava.lang.String;" 0x21072f13 "

[Ljava.lang.String;@21072f13"]

If you omit the type argument, into-array will guess the type based on the first item in
the sequence:

 (into-array ["Easier" "array" "creation"])
 -> #object["[Ljava.lang.String;" 0x88821c2 "[Ljava.lang.String;@88821c2"]

As you can see, the array contains Strings, not Objects. If you want to transform every
element of a Java array without converting to a Clojure sequence, you can use amap:

 (amap a idx ret expr)

amap creates a clone of the array a, binding that clone to the name you specify in ret.
It then executes expr once for each element in a, with idx bound to the index of the
element. Finally, amap returns the cloned array. You could use amap to uppercase
every string in an array of strings:

 (def strings (into-array ["some" "strings" "here"]))
 -> #'user/strings

 (seq (amap strings idx _ (.toUpperCase (aget strings idx))))
 -> ("SOME" "STRINGS" "HERE")

The ret parameter is set to _ to indicate that it’s not needed in the map expression, and
the wrapping seq is simply for convenience in printing the result at the REPL. Similar
to amap is areduce:

 (areduce a idx ret init expr)

Where amap produces a new array, areduce produces anything you want. The ret is
initially set to init and later set to the return value of each subsequent invocation of
expr. areduce is normally used to write functions that “tally up” a collection in some
way. For example, the following call finds the length of the longest string in the
strings array:

 (areduce strings idx ret 0 (max ret (.length (aget strings idx))))
 -> 7

amap and areduce are special-purpose macros for interoperating with Java arrays.

A Real-World Example
While it’s great to talk about the different interop cases and learn how to eke out some
additional performance using Java’s primitive forms, you still need to have some
practical, hands-on knowledge. In this example, we will build an application to test the
availability of websites. The goal here is to check to see whether the website returns an
HTTP 200 OK response. If anything other than our expected response is received, the
website should be marked as unavailable.

Again, we’ll use the clj build tool. Refer to Clojure Coding Quick Start if you don’t
have clj installed already. Let’s start by creating a directory to hold our project and
switch to it:

 mkdir pinger
 cd pinger

You can start a REPL for the pinger project using clj:

 clj

By default, source files will be loaded from the src directory, according to the
namespace of the code. We plan to work in the pinger.core namespace, so we need to
create the directory structure:

 mkdir -p src/pinger

First we need to write the code that connects to a URL and captures the response code.
We can accomplish this by using Java’s URL class. We’ll create this code in
src/pinger/core.clj:

 (ns pinger.core
 (:import [java.net URL HttpURLConnection]))

 (defn response-code [address]
 (let [conn ^HttpURLConnection (.openConnection (URL. address))
 code (.getResponseCode conn)]
 (when (< code 400)
 (-> conn .getInputStream .close))
 code))

Give it a try in the REPL:

 (require 'pinger.core)

 (in-ns 'pinger.core)

 (response-code "http://google.com")
 -> 200

Now let’s create a predicate function that uses response-code and decides whether the
specified URL is available. We will define available in our context as “returning an
HTTP 200 response code.”

 (defn available? [address]
 (= 200 (response-code address)))

 (available? "http://google.com")
 -> true

 (available? "http://google.com/badurl")
 -> false

Next we need a way to start our program and have it check every so often a list of
URLs that we care about and report their availability. Let’s create a -main function.

 (defn -main []
 (let [addresses ["https://google.com"
 "https://clojure.org"
 "http://google.com/badurl"]]
 (while true
 (doseq [address addresses]
 (println address ":" (available? address)))
 (Thread/sleep (* 1000 60)))))

In this example, we create a list of addresses (two good and one bad) and use a simple
while loop that never exits, to obtain a never-ending program execution. It will
continue to check these URLs once a minute until the program is terminated.

It’s time to run our program:

 clj -m pinger.core
 https://google.com : true
 https://clojure.org : true
 http://google.com/badurl : false

You should see your program start and continue to run until you press Ctrl-C to stop it.

A while loop that’s always true will continue to run until terminated, but it’s not really
the cleanest way to obtain the result because it doesn’t allow for a clean shutdown. We

can use a scheduled thread pool that will start and execute the desired command in a
similar fashion as the while loop but with a much greater level of control. Create a file
src/pinger/scheduler.clj and enter the following code:

 (ns pinger.scheduler
 (:import [java.util.concurrent Executors ExecutorService
 ScheduledExecutorService
 ScheduledFuture TimeUnit]))

 (set! *warn-on-reflection* true)

 (defn scheduled-executor
 "Create a scheduled executor."
 ^ScheduledExecutorService [threads]
 (Executors/newScheduledThreadPool threads))

 (defn periodically
 "Schedule function f to run on executor e every 'delay'
 milliseconds after a delay of 'initial-delay' Returns
 a ScheduledFuture."
 ^ScheduledFuture
 [^ScheduledExecutorService e f initial-delay delay]
 (.scheduleWithFixedDelay e f initial-delay delay

TimeUnit/MILLISECONDS))

 (defn shutdown-executor
 "Shutdown an executor."
 [^ExecutorService e]
 (.shutdown e))

This namespace provides functions to create and shut down a Java
ScheduledExecutorService. It also defines a function called periodically that will
accept an executor, a function, an initial-delay, and a repeated delay. It will execute
the function for the first time after the initial delay and then continue to execute the
function with the delay specified thereafter. This will continue to run until the thread
pool is shut down.

Let’s update pinger.core to take advantage of the scheduling code as well as make the
-main function responsible only for calling a function that starts the loop. Replace the
old -main with the following functions:

 (defn check []
 (let [addresses ["https://google.com"
 "https://clojure.org"

 "http://google.com/badurl"]]
 (doseq [address addresses]
 (println address ":" (available? address)))))

 (def immediately 0)
 (def every-minute (* 60 1000))

 (defn start [e]
 "REPL helper. Start pinger on executor e."
 (scheduler/periodically e check immediately every-minute))

 (defn stop [e]
 "REPL helper. Stop executor e."
 (scheduler/shutdown-executor e))

 (defn -main []
 (start (scheduler/scheduled-executor 1)))

Make sure to update your namespace declaration to include the scheduler code:

 (ns pinger.core
 (:require [pinger.scheduler :as scheduler])
 (:import [java.net HttpURLConnection URL]))

Not everything in the previous sample is necessary, but it makes for more readable
code. Adding the start and stop functions makes it easy to work interactively from the
REPL, which will be a huge advantage should you choose to extend this example.
Give the program another try—everything should function exactly as it did before.

We could easily expand on this example by extending the check for a valid web page,
checking its response time, or enhancing how sites are persisted or stored.

[42]

[43]

Wrapping Up
We just covered a good chunk of how Clojure and Java get along. We even mixed the
two up in some interesting ways. In the next and final chapter we’ll look at another
larger example and see how Clojure’s features work in combination to provide both
power and expressivity.

Footnotes

http://tinyurl.com/checked-exceptions-mistake

http://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

Copyright © 2018, The Pragmatic Bookshelf.

http://tinyurl.com/checked-exceptions-mistake
http://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

Chapter 11

Building an Application

Now that you’ve learned the basics of the Clojure language, it’s time to begin using
Clojure in your own projects. But when you start to work on your own killer Clojure
app, you’ll quickly discover that knowledge of the language is only part of what you
need to work effectively. You also need to consider questions of workflow, data
structures, polymorphism, testing, and more.

As our sample application, we’ll implement a version of the game Hangman where a
player uncovers a word by guessing a sequence of letters. Whereas we show you all
the code as we go, this chapter is not really about code. It’s about how we approach
solving problems in Clojure, by focusing on how to represent our problem in data, then
building functional algorithms around that data.

We’ll also look at how we can use specs to describe both our data and the functions
used in the program, then test those functions with generative testing.

Getting Started
Before you start writing code, it’s good to initialize a project directory on your file
system. While there are a variety of build tools and editors for Clojure, all of them
expect the root of the project directory to contain a definition of the project, to have a
directory containing all of the source code, a directory containing all of the test code,
and so on.

We won’t need all of those—for our purposes we just need a src directory that will
hold a single file of source that matches its namespace:

 $ mkdir -p src/hangman

With that sorted out, create the default source file (src/hangman/core.clj) in your
Clojure editor of choice. Add the namespace declaration:

 (ns hangman.core)

You should also ensure that you have a REPL running in the context of this project.
The exact procedure for that will vary depending your editor, so we won’t provide
instructions for that here. If you want a REPL at the command line, you can start one
by running clj.

Now, you’re ready to start working on the application.

Developing the Game Loop
There are many paths to developing successful applications with Clojure (or any
language) and many ways this application could be written. However, writing any
program involves starting from high-level goals and breaking the problem down into
smaller problems, until it’s easy to solve each subproblem with a single (usually small)
function.

Our application is a game with a single player where the player guesses letters to
slowly reveal a word. The goal for the player is to guess all of the letters in the word
with as few guesses as possible.

When you don’t know where to start, it’s always useful to think about the problem and
ask what inputs the code must take and what it will return. That’s enough to give you
the shape of a function. Then break that function down into smaller problems and
repeat.

The inputs to our game are the word the player will guess and a player that can make
guesses, so those will be your initial arguments. The return value will be the score the
player received.

 (defn game [word player] ...)

This game (and most games) centers around a repeated series of actions where the
player makes a choice, the game state is updated, and the player makes another choice.
This game loop gives us the overall framework for the game.

The game loop also serves as a guide for what code you need to write next. As you
break the loop into steps, these help you identify both the functions that are the sub-
problems and the data structures passed between the functions. Repeat this process for
each function until you hit the bottom, where you’ll find functions that are self-
contained.

Within each iteration, the game needs to ask the player for the next guess and update
the progress made on the word. If the word has been guessed, the game is complete
and the game should exit with the number of guesses that were made.

In almost every use of a loop, you’ll see a check for termination. If the game is
complete, the loop should terminate with the final score. Otherwise, a recur should
take the game back to the top of the loop, ready for the next iteration.

 (defn game
 [word player]
 (loop [progress (new-progress word), guesses 1]
 (let [guess (next-guess player progress)
 progress' (update-progress progress word guess)]
 (if (complete? progress' word)
 guesses
 (recur progress' (inc guesses))))))

This code maps very closely to the textual description of the game, with a lot of
missing details. There are two pieces of state carried by the loop across iterations: the
progress in guessing the word and the score.

The game function invokes next-guess to obtain the next guess from a player, and
we’ll consider this later in the chapter when you implement the players.

The other functions we used but didn’t define all relate to creating, updating, or
checking the progress of the game: new-progress, update-progress, and complete?.
We haven’t yet defined the data structure of the word progress, but it’s clearly a
central part of the implementation.

At this point, it’s good to create empty functions for all of the functions we invented
while writing the game loop. These empty functions serve as a road map of work you
still need to complete. They also allow you to successfully start loading and running
the code in the REPL.

 (defn next-guess [player progress])
 (defn new-progress [])
 (defn update-progress [progress word guess])
 (defn complete? [progress])

You can’t write any of the functions to create, update, or check the game progress
without knowing what the progress data structure looks like, so that’s where you
should focus next.

Representing Progress
The word the player is guessing is a string, made up of characters. Two of the most
important kinds of data structures we deal with in Clojure are maps (keyed by an
index) and sequences (which rely on sequential traversal). We have a number of
choices for representing the progress in the game, but choosing between an indexed or
sequential view is the critical decision.

So let’s think, at least at a high level, about the operations that use this data structure in
the code. The update-progress function seems like the one we care about the most.
Given the word and the guessed letter, you need to check whether each letter in the
word matches the guess, and if so, update the progress, which keeps track of all letters
guessed so far in the word.

Looking back at that description of the update operation, you need to check whether
“each letter in the word” has some property. This indicates that a sequential traversal
based on the original word would be a good match (considering all values). You then
need to update the progress data structure in the corresponding location if there is a
match.

If the progress is an indexed data structure, you need to traverse the original word and
keep track of the index as you do so, to know which index to update in the progress.
The Clojure sequence library includes some functions, keep-indexed and map-
indexed, that help with this kind of thing.

If you instead treat the progress as a sequential data structure and update it at the same
time that you traverse the original word, you can avoid tracking or using the indexes at
all. When the progress is a sequential data structure where each element might need to
be updated, you should strongly consider map, which transforms every element.
Additionally, map is one of the only sequence functions that can traverse multiple
sequences at the same time.

So let’s proceed on the assumption that a sequential structure with each element
corresponding to a letter in the original word is the working model. You could use
some kind of flag to indicate which letters have been guessed: (false false true true
false). Or you could use the actual letters and a known “blank” character: (_ _ \l \l
_). (Recall that literal characters are represented with a leading \ in Clojure.) The
latter representation gives you a built-in human readable representation of our
progress, so it might be slightly more useful, but in truth either would work.

We’ve spent enough time thinking about our data structure at this point. While that
took a while, it was time well spent because you can proceed with your functions with
a clear sense of the needs and constraints of the data.

Start with new-progress. Given a word (a string), you need a sequence of blank
characters of the same length. Here you can reach into the sequence function bag of
tricks and pull out repeat, which creates a sequence of the same element of a specific
length, here the count of the word:

hangman/src/hangman/core.clj

 (defn new-progress [word]
 (repeat (count word) _))

Now for the update. We already established that you want to map over both the word
(a string, automatically treated as a sequence of characters) and the progress (a
sequence of characters, either the actual character or a blank). The map function will
take two inputs—a letter from the word and the corresponding letter from the progress.
It needs to output the new letter in the updated progress. You also have available from
the outer function the letter that was the guess.

Putting all that together is actually pretty easy—you just need to check whether the
guessed letter matches the word character, and if so, include it in the updated progress.
If not, then use the original progress character to remember the progress so far.

hangman/src/hangman/core.clj

 (defn update-progress [progress word guess]
 (map #(if (= %1 guess) guess %2) word progress))

Finally, checking whether the player is “done” is just a check of whether the characters
in the original word match the progress. Because the word is a string, explicitly
convert it to a sequence for comparison purposes.

hangman/src/hangman/core.clj

 (defn complete? [progress word]
 (= progress (seq word)))

And that’s the core of our game loop. Now you need a player.

http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj
http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj
http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj

Implementing Players
Your interaction with the player so far has been represented by a single function, next-
guess. It’s time to fill out that idea a bit more. There are many potential ways to
implement either a human or computer player. Any time you determine a function is
open for extension, you should strongly consider using a multimethod or protocol to
make that possible.

In this case, you only have a single function, so either choice is viable. There might be
a need for players to keep state (remembering what they’ve guessed), so protocols are
a bit easier to use, by encapsulating that state in a record which extends the protocol.

So replace that function with a protocol:

hangman/src/hangman/core.clj

 (defprotocol Player
 (next-guess [player progress]))

Given this protocol, consider a first player that just makes random guesses without
regard to previous guesses.

To start with the random player, you’ll need a pool of letters to draw from. All
characters have an integer mapping, and you can leverage this, along with standard
core functions like range, to build a vector of all legal letters:

hangman/src/hangman/core.clj

 (defonce letters (mapv char (range (int \a) (inc (int \z)))))

You can then build a function that generates a random letter by using ‘rand-nth‘:

hangman/src/hangman/core.clj

 (defn rand-letter []
 (rand-nth letters))

And finally, you have everything you need to build your first player. Because you
don’t need any state for a random player, you can just use reify to create an
anonymous implementation of the random player:

hangman/src/hangman/core.clj

http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj
http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj
http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj
http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj

 (def random-player
 (reify Player
 (next-guess [_ progress] (rand-letter))))

Now that you have a player, you can actually run the game and see how the random
player does.

 (game random-player "hello")
 -> 92

Not so good. Given only 26 letters in the alphabet, any score over 26 is pretty bad. If
you can give your player some memory, it could at least avoid guessing the same (bad)
letters over and over again.

In fact, keeping in mind that the maximum number of guesses you should need to
make is 26, it’s reasonable to create a player that is simply given the choices to make
in order.

Memory requires state, so you’ll need to use one of the stateful Clojure constructs to
store that memory. Since each player will only be used in a single thread and does not
require state coordination or asynchronous updating, an atom is sufficient.

The choices-player will use an atom containing the sequence of choices to make. The
next-guess implementation then simply takes the first choice and updates the atom to
retain the rest of the choices for the next call.

The player could be implemented by closing over the atom and using reify as you did
with random-player, but instead use a record to hold the state and extend it to the
protocol:

hangman/src/hangman/core.clj

 (defrecord ChoicesPlayer [choices]
 Player
 (next-guess [_ progress]
 (let [guess (first @choices)]
 (swap! choices rest)
 guess)))

 (defn choices-player [choices]
 (->ChoicesPlayer (atom choices)))

You can then create a shuffled-player that guesses each letter in a random order by

http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj

just shuffling the letters vector:

hangman/src/hangman/core.clj

 (defn shuffled-player []
 (choices-player (shuffle letters)))

Run a few games and try it:

 (game (shuffled-player) "hello")
 -> 24

 (game (shuffled-player) "hello")
 -> 19

 (game (shuffled-player) "hello")
 -> 21

That’s certainly better than 92, but it still doesn’t seem very good. You could instead
implement a player that picks the letters in alphabetical order instead of shuffled order
by just not shuffling:

hangman/src/hangman/core.clj

 (defn alpha-player []
 (choices-player letters))

You only need to run this test once as there’s no random element:

 (game (alpha-player) "hello")
 -> 15

That’s a better score for this word, but it would be worse for others—you can actually
predict the score, as it will be the index of the latest letter in the alphabet (here “o”
which is 15th).

Over a wide range of words, you would expect the frequency of letters in English
words[44] to be a good ordering. You can just hard-code that into a freq-player:

hangman/src/hangman/core.clj

 (defn freq-player []
 (choices-player (seq "etaoinshrdlcumwfgypbvkjxqz")))

Give it a try:

http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj
http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj
http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj

 (game (freq-player) "hello")
 -> 11

Just letting the computer play isn’t very fun though. Next let’s add an interactive
player so you can play, too.

Interactive Play
As you consider interactive play, you’ll need to make a few additions to the program.
Right now the game only returns the final score, but an interactive game should report
progress as the game progresses. Also, right now you’re choosing the word to guess,
but we really need to let the program choose a random word so it’s a mystery to a
human player.

Let’s tackle the random word first. Included in the hangman project is a file words.txt,
which contains about 4000 words that you can use as a word bank. First, read those
words into a data structure.

hangman/src/hangman/core.clj

 (defn valid-letter? [c]
 (<= (int \a) (int c) (int \z)))

 (defonce available-words
 (with-open [r (jio/reader "words.txt")]
 (->> (line-seq r)
 (filter #(every? valid-letter? %))
 vec)))

The clojure.java.io namespace (aliased here to jio) has a number of helpful functions
for interacting with the Java I/O library. Java has several I/O abstractions for different
purposes. For example, streams represent binary streams of data and readers and
writers are used for reading and writing character-based data. The jio/reader function
will coerce many input sources into a Java reader.

Once you have the reader, you can break it into lines with line-seq, filter to keep only
those that contain valid letters (omitting those with punctuation), and finally leave the
final result in a vector. This is a typical sequence processing pipeline, tied together
with the ->> thread-last operator.

Note that defonce is used here. defonce is a special wrapper for def that will prevent
re-execution if this namespace is reloaded. This change avoids re-reading the word
file, which is expensive. This mostly helps during development.

Now that you have a vector of valid words, you can easily pick a random one with
rand-nth:

http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj

hangman/src/hangman/core.clj

 (defn rand-word []
 (rand-nth available-words))

Try it out:

 (repeatedly 5 rand-word)
 -> ("sophisticated" "humor" "proclaim" "threshold" "obtain")

Next, let’s revisit our game function and add some printing to reveal the game
progress. It’s common to add optional keyword arguments to the end of an invocation,
so define a new :verbose option. Clojure supports destructuring the varargs sequential
arguments as if they were a map for this purpose. It’s also good practice to declare
defaults using the :or destructuring syntax.

Within the game loop, add a call to report progress when the verbose flag is set:

hangman/src/hangman/core.clj

 (defn game
 [word player & {:keys [verbose] :or {verbose false}}]
 (when verbose
 (println "You are guessing a word with" (count word) "letters"))
 (loop [progress (new-progress word), guesses 1]
 (let [guess (next-guess player progress)
 progress' (update-progress progress word guess)]
 (when verbose (report progress guess progress'))
 (if (complete? progress' word)
 guesses
 (recur progress' (inc guesses))))))

Calling out to a function here keeps the reporting out of the main loop and makes the
core loop code easier to read. The progress reporting looks like this:

hangman/src/hangman/core.clj

 (defn report [begin-progress guess end-progress]
 (println)
 (println "You guessed:" guess)
 (if (= begin-progress end-progress)
 (if (some #{guess} end-progress)
 (println "Sorry, you already guessed:" guess)
 (println "Sorry, the word does not contain:" guess))

http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj
http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj
http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj

 (println "The letter" guess "is in the word!"))
 (println "Progress so far:" (apply str end-progress)))

And finally, you need to create the interactive player, which will accept guesses
interactively from the player:

hangman/src/hangman/core.clj

 (def interactive-player
 (reify Player
 (next-guess [_ progress] (take-guess))))

Like the random-player, no state is being used here, so you can just define a single
interactive-player to use that does nothing more than defer to a function take-guess
that interacts with the console.

Clojure provides access to the stdin input stream via the *in* dynamic variable, which
will be an instance of java.io.Reader. Here’s the full code:

hangman/src/hangman/core.clj

 (defn take-guess []
 (println)
 (print "Enter a letter: ")
 (flush)
 (let [input (.readLine *in*)
 line (str/trim input)]
 (cond
 (str/blank? line) (recur)
 (valid-letter? (first line)) (first line)
 :else (do
 (println "That is not a valid letter!")
 (recur)))))

Start by printing the instructions to the user using print, which will not print a newline
character at the end but will instead wait for the user’s response. Next, call flush to
force the buffered output stream to print so the user will see it. Then you’re ready to
read the user’s input from the input stream—just call readLine via Java interop.

Once the user hits enter, you can consider their response. If the line is blank, you can
recur back to the top of the function (remember that functions serve as implicit loop
targets) to try again. If the response starts with a valid letter, return that. And if the
letter is invalid, notify the user and try again. Now you can put all this together and
play a game yourself.

http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj
http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/core.clj

 (game (rand-word) interactive-player :verbose true)

 You are guessing a word with 4 letters

 Enter a letter: a
 The player guessed: a
 The letter a is in the word!
 Progress so far: _a__

 Enter a letter: e
 The player guessed: e
 The letter e is in the word!
 Progress so far: ea__

 Enter a letter: c
 The player guessed: c
 Sorry, the word does not contain: c
 Progress so far: ea__

 Enter a letter: s
 The player guessed: s
 The letter s is in the word!
 Progress so far: eas_

 Enter a letter: t
 The player guessed: t
 Sorry, the word does not contain: t
 Progress so far: eas_

 Enter a letter: y
 The player guessed: y
 The letter y is in the word!
 Progress so far: easy
 -> 6

Seems like the interactive player works. Next let’s consider how we can use specs to
document and test the program.

Documenting and Testing Your Game
You have a working game at this point, but you also need to consider the poor
developer who’s going to pick this up six months from now (particularly if it’s you).
You worked hard to pick a good data structure and implement your functions, but you
need to communicate those data structures for future use.

If you write some specs, you can describe the key data structures, annotate the
functions, and even generate some automated tests that check whether everything
works (especially when you start making changes at some future date).

When you started working on the implementation earlier, we quickly honed in on the
progress data structure and the trio of internal functions (new-progress, update-
progress, and complete?) that dealt with creating, updating, and checking that data
structure. Because that data structure is critical to the internals of the game, it’s also a
good place to start writing specs.

The signature for new-progress takes a word and returns the initial progress value.
Our spec defines the structure of the arguments and return value of that function.

 (s/fdef hangman.core/new-progress
 :args (s/cat :word ::word)
 :ret ::progress)

You haven’t defined a ::word or ::progress spec yet, but that’s ok—these show us
what you need to do next.

Words are made up of letters, and you’ve already made some definitions in our code
for letters that you can use. This is a common case when writing specs—often the
implementation and the specs use the same predicates and talk in the same “language”,
which is why specs feel so expressive.

hangman/src/hangman/specs.clj

 (s/def ::letter (set letters))

A ::letter spec is the set of valid letters, which you already defined in the random
player. We also could have used the predicate valid-letter?; however, we want to have
our specs act as generators as well. The valid-letter? predicate doesn’t have an
automatically created generator, whereas these are provided for sets.

http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/specs.clj

Now you can create a spec for a word, which is just a string that consists of at least one
valid letter:

 (s/def ::word
 (s/and string?
 #(pos? (count %))
 #(every? valid-letter? (seq %)))

Clojure spec will attempt to create an automatic generator from this spec, but it uses a
wide range of characters, certainly more than our narrow ::letter spec will allow. The
automatic generator will produce strings of this broader character set, then filter to just
strings of the allowed characters, which requires much more work than seems
necessary (and it may not work at all). Instead, you should supply your own generator,
tailored to our character set.

The s/with-gen macro wraps a spec and attaches a custom generator. In this case, we
want to generate a collection of one or more valid letters, then create a string from
those letters. In clojure.spec.gen.alpha, the fmap function takes a source generator
and applies an arbitrary function to each sample, defining a new generator:

hangman/src/hangman/specs.clj

 (s/def ::word
 (s/with-gen
 (s/and string?
 #(pos? (count %))
 #(every? valid-letter? (seq %)))
 #(gen/fmap
 (fn [letters] (apply str letters))
 (s/gen (s/coll-of ::letter :min-count 1)))))

You can test it out directly at the REPL:

 (gen/sample (s/gen ::word))
 -> ("hilridqg"
 "ipllomgodmzhh"
 "xbsllzg"
 "etdjwdtvquuswpox"
 "adrgrhntbuzewbdvfa"
 ...)

Those look appropriately word-like for our purposes. You now have a spec for words,
so let’s think about the ::progress spec. We decided that progress would be

http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/specs.clj

represented by a sequence of either letters or _ to indicate an unguessed character.
Since we added an additional character, we’ll need a new spec ::progress-letter that
expands ::letter to include _. The ::progress spec is then a collection of at least one of
that expanded letter set:

hangman/src/hangman/specs.clj

 (s/def ::progress-letter
 (conj (set letters) _))

 (s/def ::progress
 (s/coll-of ::progress-letter :min-count 1))

That’s enough specs to start testing new-progress. You can use stest/check for that
and summarize what happened with summarize-results:

 (stest/summarize-results (stest/check 'hangman.core/new-progress))
 {:sym hangman.core/new-progress}
 -> {:total 1, :check-passed 1}

You tested one function and it passed. However, you aren’t really testing as much as
you could in this function. If you look again at the args (the word) and the return value
(the progress value), there’s another constraint—both values should be the same
length. You can encode this in the :fn spec of the new-progress spec, which takes a
map of the conformed :args and :ret spec values. Constraints that include both the args
and the ret value are always recorded in the :fn spec.

hangman/src/hangman/specs.clj

 (defn- letters-left
 [progress]
 (->> progress (keep #{_}) count))

 (s/fdef hangman.core/new-progress
 :args (s/cat :word ::word)
 :ret ::progress
 :fn (fn [{:keys [args ret]}]
 (= (count (:word args)) (count ret) (letters-left ret))))

First, create a helper function letters-left to compute the number of unguessed letters
in a progress data structure. You can then check that the number of letters in the input
word, the number of letters in the progress, and the number of unguessed letters are all
the same. Rerunning the test reveals no unseen problems, but it’s good to have the

http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/specs.clj
http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/specs.clj

extra constraint for future changes.

Next, you can handle the update-progress function using specs you’ve already
defined for ::progress, ::word, and ::letter. Again, you can add a useful :fn constraint
to verify that the number of letters left unguessed is less than or equal to the number
unguessed at the beginning.

hangman/src/hangman/specs.clj

 (s/fdef hangman.core/update-progress
 :args (s/cat :progress ::progress :word ::word :guess ::letter)
 :ret ::progress
 :fn (fn [{:keys [args ret]}]
 (>= (-> args :progress letters-left)
 (-> ret letters-left))))

And finally, the spec for complete? is straightforward:

hangman/src/hangman/specs.clj

 (s/fdef hangman.core/complete?
 :args (s/cat :progress ::progress :word ::word)
 :ret boolean?)

Now that you’ve described the progress functions, you can turn to the main game
function itself. The game function takes a word, a player, an optional verbose tag and
returns a score.

We’ve not yet considered how to spec a player, but you can just check the protocol in
a predicate. In the ::player spec, we want the generator to work and produce a player,
so let’s just have it choose a random one of the players you’ve defined:

hangman/src/hangman/specs.clj

 (defn player? [p]
 (satisfies? Player p))

 (s/def ::player
 (s/with-gen player?
 #(s/gen #{random-player
 shuffled-player
 alpha-player
 freq-player})))

http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/specs.clj
http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/specs.clj
http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/specs.clj

While you could spec the verbose flag and score in-line with the game spec, pulling
these out as independent specs creates better, more concrete names, which are
potentially reusable. For the verbose flag, you want your tests to be quiet, so the
generator is hard-coded to always return false.

hangman/src/hangman/specs.clj

 (s/def ::verbose (s/with-gen boolean? #(s/gen false?)))
 (s/def ::score pos-int?)

 (s/fdef hangman.core/game
 :args (s/cat :word ::word
 :player ::player
 :opts (s/keys* :opt-un [::verbose]))
 :ret ::score)

If you test this out by running check, you’ll see that everything looks good. check runs
1000 games with a random player and word. It’s also useful to verify all of the
function specs you have while running these tests. You can do that by instrumenting
all of the specs before running check:

 (stest/instrument (stest/enumerate-namespace 'hangman.core))
 => [hangman.core/update-progress hangman.core/new-progress
 hangman.core/game hangman.core/complete?]

Any time you run stest/instrument, it’s good to verify that the return value states all
of the instrumented functions you expect to see as a test of reasonability.

If you rerun the check, you still see no issues, but now all of the arg specs are being
verified as well, giving you greater confidence in the correctness of the code. You can
then do a final check that runs check on all spec’ed functions we defined:

 (-> 'hangman.core
 stest/enumerate-namespace
 stest/check
 stest/summarize-results)
 {:sym hangman.core/update-progress}
 {:sym hangman.core/new-progress}
 {:sym hangman.core/game}
 {:sym hangman.core/complete?}
 -> {:total 4, :check-passed 4}

You could go further with testing some of the details of the individual players, but this
should give you a taste for testing with spec.

http://media.pragprog.com/titles/shcloj3/code/hangman/src/hangman/specs.clj

[44]

Farewell
Congratulations. You have come a long way in a short time. You have learned the
many ideas that combine to make Clojure great: Lisp, Java, functional programming,
and explicit concurrency. And in this chapter, you saw one (of a great many) possible
workflows for developing a full application in Clojure.

We’ve only scratched the surface of Clojure’s great potential, and we hope you’ll take
the next step and become an active part of the Clojure community.

Footnotes

https://en.wikipedia.org/wiki/Letter_frequency#Relative_frequencies_of_letters_in_the_English_language

Copyright © 2018, The Pragmatic Bookshelf.

https://en.wikipedia.org/wiki/Letter_frequency#Relative_frequencies_of_letters_in_the_English_language

[Goe06]

[Hof99]

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email us at
support@pragprog.com with your feedback. Tell us your story and you could win
free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2017 to save 30% on
your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use ebooks near
water. If rash persists, see a doctor. Doesn’t apply to The Pragmatic Programmer
ebook because it’s older than the Pragmatic Bookshelf itself. Side effects may
include increased knowledge and skill, increased marketability, and deep satisfaction.
Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

Bibliography

Brian Goetz. Java Concurrency in Practice. Addison-Wesley, Boston,
MA, 2006.
Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid.
Basic Books, New York, NY, 20th Anniv, 1999.

Copyright © 2018, The Pragmatic Bookshelf.

https://pragprog.com

Clojure Applied
Think in the Clojure way! Once you’re familiar with Clojure,
take the next step with extended lessons on the best practices
and most critical decisions you’ll need to make while
developing. Learn how to model your domain with data,
transform it with pure functions, manage state, spread your
work across cores, and structure apps with components.
Discover how to use Clojure in the real world, and unlock the

speed and power of this beautiful language on the Java Virtual Machine.

Ben Vandgrift and Alex Miller

(238 pages) ISBN: 9781680500745 $38

Mastering Clojure Macros
Level up your skills by taking advantage of Clojure’s powerful
macro system. Macros make hard things possible and normal
things easy. They can be tricky to use, and this book will help
you deftly navigate the terrain. You’ll discover how to write
straightforward code that avoids duplication and clarifies your
intentions. You’ll learn how and why to write macros. You’ll
learn to recognize situations when using a macro would (and

wouldn’t!) be helpful. And you’ll use macros to remove unnecessary code and build
new language features.

Colin Jones

(120 pages) ISBN: 9781941222225 $17

tmux 2
Your mouse is slowing you down. The time you spend context switching between

You May Be Interested In…
Select a cover for more information

http://pragmaticprogrammer.com/titles/vmclojeco
http://pragmaticprogrammer.com/titles/cjclojure

your editor and your consoles eats away at your productivity.
Take control of your environment with tmux, a terminal
multiplexer that you can tailor to your workflow. With this
updated second edition for tmux 2.3, you’ll customize, script,
and leverage tmux’s unique abilities to craft a productive
terminal environment that lets you keep your fingers on your
keyboard’s home row.

Brian P. Hogan

(102 pages) ISBN: 9781680502213 $21.95

Modern Vim
Turn Vim into a full-blown development environment using
Vim 8’s new features and this sequel to the beloved bestseller
Practical Vim. Integrate your editor with tools for building,
testing, linting, indexing, and searching your codebase.
Discover the future of Vim with Neovim: a fork of Vim that
includes a built-in terminal emulator that will transform your
workflow. Whether you choose to switch to Neovim or stick

with Vim 8, you’ll be a better developer.

Drew Neil

(190 pages) ISBN: 9781680502626 $39.95

Exercises for Programmers
When you write software, you need to be at the top of your game.
Great programmers practice to keep their skills sharp. Get sharp
and stay sharp with more than fifty practice exercises rooted in
real-world scenarios. If you’re a new programmer, these
challenges will help you learn what you need to break into the
field, and if you’re a seasoned pro, you can use these exercises to
learn that hot new language for your next gig.

Brian P. Hogan

http://pragmaticprogrammer.com/titles/bhtmux2
http://pragmaticprogrammer.com/titles/modvim
http://pragmaticprogrammer.com/titles/bhwb

(118 pages) ISBN: 9781680501223 $24

Creating Great Teams
People are happiest and most productive if they can choose
what they work on and who they work with. Self-selecting
teams give people that choice. Build well-designed and
efficient teams to get the most out of your organization, with
step-by-step instructions on how to set up teams quickly and
efficiently. You’ll create a process that works for you, whether
you need to form teams from scratch, improve the design of

existing teams, or are on the verge of a big team re-shuffle.

Sandy Mamoli and David Mole

(102 pages) ISBN: 9781680501285 $17

Mazes for Programmers
A book on mazes? Seriously? Yes! Not because you spend
your day creating mazes, or because you particularly like
solving mazes. But because it’s fun. Remember when
programming used to be fun? This book takes you back to
those days when you were starting to program, and you wanted
to make your code do things, draw things, and solve puzzles.
It’s fun because it lets you explore and grow your code, and

reminds you how it feels to just think. Sometimes it feels like you live your life in a
maze of twisty little passages, all alike. Now you can code your way out.

Jamis Buck

(286 pages) ISBN: 9781680500554 $38

Good Math
Mathematics is beautiful—and it can be fun and exciting as well as practical. Good
Math is your guide to some of the most intriguing topics from two thousand years of
mathematics: from Egyptian fractions to Turing machines; from the real meaning of

http://pragmaticprogrammer.com/titles/mmteams
http://pragmaticprogrammer.com/titles/jbmaze

numbers to proof trees, group symmetry, and mechanical
computation. If you’ve ever wondered what lay beyond the proofs
you struggled to complete in high school geometry, or what limits
the capabilities of the computer on your desk, this is the book for
you.

Mark C. Chu-Carroll

(282 pages) ISBN: 9781937785338 $34

http://pragmaticprogrammer.com/titles/mcmath

Table of Contents

Acknowledgments 10
Introduction 11

Who This Book Is For 12
What’s in This Book 13
How to Read This Book 15
Notation Conventions 17
Web Resources and Feedback 19
Downloading Sample Code 20

1. Getting Started 21
Simplicity and Power in Action 22
Clojure Coding Quick Start 31
Navigating Clojure Libraries 37
Wrapping Up 41

2. Exploring Clojure 42
Reading Clojure 43
Functions 50
Vars, Bindings, and Namespaces 56
Metadata 63
Calling Java 65
Comments 69
Flow Control 70
Where’s My for Loop? 74
Wrapping Up 78

3. Unifying Data with Sequences 79
Everything Is a Sequence 81
Using the Sequence Library 86
Lazy and Infinite Sequences 96
Clojure Makes Java Seq-able 99
Calling Structure-Specific Functions 105
Wrapping Up 114

4. Functional Programming 115
Functional Programming Concepts 116
How to Be Lazy 121
Lazier Than Lazy 130

Recursion Revisited 136
Eager Transformations 146
Wrapping Up 151

5. Specifications 152
Defining Specs 155
Validating Data 157
Validating Functions 165
Generative Function Testing 173
Wrapping Up 178

6. State and Concurrency 179
Concurrency, Parallelism, and Locking 180
Refs and Software Transactional Memory 182
Use Atoms for Uncoordinated, Synchronous Updates 189
Use Agents for Asynchronous Updates 191
Managing Per-Thread State with Vars 197
A Clojure Snake 202
Wrapping Up 213

7. Protocols and Datatypes 214
Programming to Abstractions 215
Interfaces 219
Protocols 221
Datatypes 226
Records 232
reify 238
Wrapping Up 239

8. Macros 240
When to Use Macros 241
Writing a Control Flow Macro 242
Making Macros Simpler 249
Taxonomy of Macros 255
Wrapping Up 265

9. Multimethods 266
Living Without Multimethods 267
Defining Multimethods 270
Moving Beyond Simple Dispatch 274
Creating Ad Hoc Taxonomies 276
When Should I Use Multimethods? 281

Wrapping Up 285

10. Java Interop 286
Creating Java Objects in Clojure 287
Calling Clojure From Java 292
Exception Handling 293
Optimizing for Performance 298
A Real-World Example 308
Wrapping Up 312

11. Building an Application 313
Getting Started 314
Developing the Game Loop 315
Representing Progress 317
Implementing Players 319
Interactive Play 323
Documenting and Testing Your Game 327
Farewell 332

Bibliography 333

	Acknowledgments
	Introduction
	Who This Book Is For
	What’s in This Book
	How to Read This Book
	Notation Conventions
	Web Resources and Feedback
	Downloading Sample Code

	1. Getting Started
	Simplicity and Power in Action
	Clojure Coding Quick Start
	Navigating Clojure Libraries
	Wrapping Up

	2. Exploring Clojure
	Reading Clojure
	Functions
	Vars, Bindings, and Namespaces
	Metadata
	Calling Java
	Comments
	Flow Control
	Where’s My for Loop?
	Wrapping Up

	3. Unifying Data with Sequences
	Everything Is a Sequence
	Using the Sequence Library
	Lazy and Infinite Sequences
	Clojure Makes Java Seq-able
	Calling Structure-Specific Functions
	Wrapping Up

	4. Functional Programming
	Functional Programming Concepts
	How to Be Lazy
	Lazier Than Lazy
	Recursion Revisited
	Eager Transformations
	Wrapping Up

	5. Specifications
	Defining Specs
	Validating Data
	Validating Functions
	Generative Function Testing
	Wrapping Up

	6. State and Concurrency
	Concurrency, Parallelism, and Locking
	Refs and Software Transactional Memory
	Use Atoms for Uncoordinated, Synchronous Updates
	Use Agents for Asynchronous Updates
	Managing Per-Thread State with Vars
	A Clojure Snake
	Wrapping Up

	7. Protocols and Datatypes
	Programming to Abstractions
	Interfaces
	Protocols
	Datatypes
	Records
	reify
	Wrapping Up

	8. Macros
	When to Use Macros
	Writing a Control Flow Macro
	Making Macros Simpler
	Taxonomy of Macros
	Wrapping Up

	9. Multimethods
	Living Without Multimethods
	Defining Multimethods
	Moving Beyond Simple Dispatch
	Creating Ad Hoc Taxonomies
	When Should I Use Multimethods?
	Wrapping Up

	10. Java Interop
	Creating Java Objects in Clojure
	Calling Clojure From Java
	Exception Handling
	Optimizing for Performance
	A Real-World Example
	Wrapping Up

	11. Building an Application
	Getting Started
	Developing the Game Loop
	Representing Progress
	Implementing Players
	Interactive Play
	Documenting and Testing Your Game
	Farewell

	Bibliography

